| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 | /* dorg2r.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dorg2r_(integer *m, integer *n, integer *k, doublereal *	a, integer *lda, doublereal *tau, doublereal *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    doublereal d__1;    /* Local variables */    integer i__, j, l;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *), dlarf_(char *, integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DORG2R generates an m by n real matrix Q with orthonormal columns, *//*  which is defined as the first n columns of a product of k elementary *//*  reflectors of order m *//*        Q  =  H(1) H(2) . . . H(k) *//*  as returned by DGEQRF. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix Q. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix Q. M >= N >= 0. *//*  K       (input) INTEGER *//*          The number of elementary reflectors whose product defines the *//*          matrix Q. N >= K >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the i-th column must contain the vector which *//*          defines the elementary reflector H(i), for i = 1,2,...,k, as *//*          returned by DGEQRF in the first k columns of its array *//*          argument A. *//*          On exit, the m-by-n matrix Q. *//*  LDA     (input) INTEGER *//*          The first dimension of the array A. LDA >= max(1,M). *//*  TAU     (input) DOUBLE PRECISION array, dimension (K) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i), as returned by DGEQRF. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument has an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0 || *n > *m) {	*info = -2;    } else if (*k < 0 || *k > *n) {	*info = -3;    } else if (*lda < max(1,*m)) {	*info = -5;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DORG2R", &i__1);	return 0;    }/*     Quick return if possible */    if (*n <= 0) {	return 0;    }/*     Initialise columns k+1:n to columns of the unit matrix */    i__1 = *n;    for (j = *k + 1; j <= i__1; ++j) {	i__2 = *m;	for (l = 1; l <= i__2; ++l) {	    a[l + j * a_dim1] = 0.;/* L10: */	}	a[j + j * a_dim1] = 1.;/* L20: */    }    for (i__ = *k; i__ >= 1; --i__) {/*        Apply H(i) to A(i:m,i:n) from the left */	if (i__ < *n) {	    a[i__ + i__ * a_dim1] = 1.;	    i__1 = *m - i__ + 1;	    i__2 = *n - i__;	    dlarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[		    i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);	}	if (i__ < *m) {	    i__1 = *m - i__;	    d__1 = -tau[i__];	    dscal_(&i__1, &d__1, &a[i__ + 1 + i__ * a_dim1], &c__1);	}	a[i__ + i__ * a_dim1] = 1. - tau[i__];/*        Set A(1:i-1,i) to zero */	i__1 = i__ - 1;	for (l = 1; l <= i__1; ++l) {	    a[l + i__ * a_dim1] = 0.;/* L30: */	}/* L40: */    }    return 0;/*     End of DORG2R */} /* dorg2r_ */
 |