shadow3d.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2012-2013 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * This examplifies the use of the 3D matrix shadow filters: a source "matrix" of
  19. * NX*NY*NZ elements (plus SHADOW wrap-around elements) is partitioned into
  20. * matrices with some shadowing, and these are copied into a destination
  21. * "matrix2" of
  22. * NRPARTSX*NPARTSY*NPARTSZ*((NX/NPARTSX+2*SHADOWX)*(NY/NPARTSY+2*SHADOWY)*(NZ/NPARTSZ+2*SHADOWZ))
  23. * elements, partitioned in the traditionnal way, thus showing how shadowing
  24. * shows up.
  25. */
  26. #include <starpu.h>
  27. /* Shadow width */
  28. #define SHADOWX 2
  29. #define SHADOWY 3
  30. #define SHADOWZ 4
  31. #define NX 12
  32. #define NY 9
  33. #define NZ 6
  34. #define PARTSX 4
  35. #define PARTSY 3
  36. #define PARTSZ 2
  37. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  38. void cpu_func(void *buffers[], void *cl_arg)
  39. {
  40. /* length of the shadowed source matrix */
  41. unsigned ldy = STARPU_BLOCK_GET_LDY(buffers[0]);
  42. unsigned ldz = STARPU_BLOCK_GET_LDZ(buffers[0]);
  43. unsigned x = STARPU_BLOCK_GET_NX(buffers[0]);
  44. unsigned y = STARPU_BLOCK_GET_NY(buffers[0]);
  45. unsigned z = STARPU_BLOCK_GET_NZ(buffers[0]);
  46. /* local copy of the shadowed source matrix pointer */
  47. int *val = (int *)STARPU_BLOCK_GET_PTR(buffers[0]);
  48. /* length of the destination matrix */
  49. unsigned ldy2 = STARPU_BLOCK_GET_LDY(buffers[1]);
  50. unsigned ldz2 = STARPU_BLOCK_GET_LDZ(buffers[1]);
  51. unsigned x2 = STARPU_BLOCK_GET_NX(buffers[1]);
  52. unsigned y2 = STARPU_BLOCK_GET_NY(buffers[1]);
  53. unsigned z2 = STARPU_BLOCK_GET_NZ(buffers[1]);
  54. /* local copy of the destination matrix pointer */
  55. int *val2 = (int *)STARPU_BLOCK_GET_PTR(buffers[1]);
  56. unsigned i, j, k;
  57. /* If things go right, sizes should match */
  58. STARPU_ASSERT(x == x2);
  59. STARPU_ASSERT(y == y2);
  60. STARPU_ASSERT(z == z2);
  61. for (k = 0; k < z; k++)
  62. for (j = 0; j < y; j++)
  63. for (i = 0; i < x; i++)
  64. val2[k*ldz2+j*ldy2+i] = val[k*ldz+j*ldy+i];
  65. }
  66. #ifdef STARPU_USE_CUDA
  67. void cuda_func(void *buffers[], void *cl_arg)
  68. {
  69. /* length of the shadowed source matrix */
  70. unsigned ldy = STARPU_BLOCK_GET_LDY(buffers[0]);
  71. unsigned ldz = STARPU_BLOCK_GET_LDZ(buffers[0]);
  72. unsigned x = STARPU_BLOCK_GET_NX(buffers[0]);
  73. unsigned y = STARPU_BLOCK_GET_NY(buffers[0]);
  74. unsigned z = STARPU_BLOCK_GET_NZ(buffers[0]);
  75. /* local copy of the shadowed source matrix pointer */
  76. int *val = (int *)STARPU_BLOCK_GET_PTR(buffers[0]);
  77. /* length of the destination matrix */
  78. unsigned ldy2 = STARPU_BLOCK_GET_LDY(buffers[1]);
  79. unsigned ldz2 = STARPU_BLOCK_GET_LDZ(buffers[1]);
  80. unsigned x2 = STARPU_BLOCK_GET_NX(buffers[1]);
  81. unsigned y2 = STARPU_BLOCK_GET_NY(buffers[1]);
  82. unsigned z2 = STARPU_BLOCK_GET_NZ(buffers[1]);
  83. /* local copy of the destination matrix pointer */
  84. int *val2 = (int *)STARPU_BLOCK_GET_PTR(buffers[1]);
  85. unsigned k;
  86. cudaError_t cures;
  87. /* If things go right, sizes should match */
  88. STARPU_ASSERT(x == x2);
  89. STARPU_ASSERT(y == y2);
  90. STARPU_ASSERT(z == z2);
  91. for (k = 0; k < z; k++) {
  92. cures = cudaMemcpy2DAsync(val2+k*ldz2, ldy2*sizeof(*val2), val+k*ldz, ldy*sizeof(*val),
  93. x*sizeof(*val), y, cudaMemcpyDeviceToDevice, starpu_cuda_get_local_stream());
  94. STARPU_ASSERT(!cures);
  95. }
  96. cures = cudaStreamSynchronize(starpu_cuda_get_local_stream());
  97. STARPU_ASSERT(!cures);
  98. }
  99. #endif
  100. int main(int argc, char **argv)
  101. {
  102. unsigned i, j, k, l, m, n;
  103. int matrix[NZ + 2*SHADOWZ][NY + 2*SHADOWY][NX + 2*SHADOWX];
  104. int matrix2[NZ + PARTSZ*2*SHADOWZ][NY + PARTSY*2*SHADOWY][NX + PARTSX*2*SHADOWX];
  105. starpu_data_handle_t handle, handle2;
  106. int ret;
  107. struct starpu_codelet cl =
  108. {
  109. .cpu_funcs = {cpu_func, NULL},
  110. .cpu_funcs_name = {"cpu_func", NULL},
  111. #ifdef STARPU_USE_CUDA
  112. .cuda_funcs = {cuda_func, NULL},
  113. #endif
  114. .nbuffers = 2,
  115. .modes = {STARPU_R, STARPU_W}
  116. };
  117. memset(matrix, -1, sizeof(matrix));
  118. for(k=1 ; k<=NZ ; k++)
  119. for(j=1 ; j<=NY ; j++)
  120. for(i=1 ; i<=NX ; i++)
  121. matrix[SHADOWZ+k-1][SHADOWY+j-1][SHADOWX+i-1] = i+j+k;
  122. /* Copy planes */
  123. for (k = SHADOWZ ; k<SHADOWZ+NZ ; k++)
  124. for (j = SHADOWY ; j<SHADOWY+NY ; j++)
  125. for(i=0 ; i<SHADOWX ; i++) {
  126. matrix[k][j][i] = matrix[k][j][i+NX];
  127. matrix[k][j][SHADOWX+NX+i] = matrix[k][j][SHADOWX+i];
  128. }
  129. for(k=SHADOWZ ; k<SHADOWZ+NZ ; k++)
  130. for(j=0 ; j<SHADOWY ; j++)
  131. for(i=SHADOWX ; i<SHADOWX+NX ; i++) {
  132. matrix[k][j][i] = matrix[k][j+NY][i];
  133. matrix[k][SHADOWY+NY+j][i] = matrix[k][SHADOWY+j][i];
  134. }
  135. for(k=0 ; k<SHADOWZ ; k++)
  136. for(j=SHADOWY ; j<SHADOWY+NY ; j++)
  137. for(i=SHADOWX ; i<SHADOWX+NX ; i++) {
  138. matrix[k][j][i] = matrix[k+NZ][j][i];
  139. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j][i];
  140. }
  141. /* Copy borders */
  142. for (k = SHADOWZ ; k<SHADOWZ+NZ ; k++)
  143. for(j=0 ; j<SHADOWY ; j++)
  144. for(i=0 ; i<SHADOWX ; i++) {
  145. matrix[k][j][i] = matrix[k][j+NY][i+NX];
  146. matrix[k][SHADOWY+NY+j][i] = matrix[k][SHADOWY+j][i+NX];
  147. matrix[k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[k][SHADOWY+j][SHADOWX+i];
  148. matrix[k][j][SHADOWX+NX+i] = matrix[k][j+NY][SHADOWX+i];
  149. }
  150. for(k=0 ; k<SHADOWZ ; k++)
  151. for (j = SHADOWY ; j<SHADOWY+NY ; j++)
  152. for(i=0 ; i<SHADOWX ; i++) {
  153. matrix[k][j][i] = matrix[k+NZ][j][i+NX];
  154. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j][i+NX];
  155. matrix[SHADOWZ+NZ+k][j][SHADOWX+NX+i] = matrix[SHADOWZ+k][j][SHADOWX+i];
  156. matrix[k][j][SHADOWX+NX+i] = matrix[k+NZ][j][SHADOWX+i];
  157. }
  158. for(k=0 ; k<SHADOWZ ; k++)
  159. for(j=0 ; j<SHADOWY ; j++)
  160. for(i=SHADOWX ; i<SHADOWX+NX ; i++) {
  161. matrix[k][j][i] = matrix[k+NZ][j+NY][i];
  162. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j+NY][i];
  163. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][i] = matrix[SHADOWZ+k][SHADOWY+j][i];
  164. matrix[k][SHADOWY+NY+j][i] = matrix[k+NZ][SHADOWY+j][i];
  165. }
  166. /* Copy corners */
  167. for(k=0 ; k<SHADOWZ ; k++)
  168. for(j=0 ; j<SHADOWY ; j++)
  169. for(i=0 ; i<SHADOWX ; i++) {
  170. matrix[k][j][i] = matrix[k+NZ][j+NY][i+NX];
  171. matrix[k][j][SHADOWX+NX+i] = matrix[k+NZ][j+NY][SHADOWX+i];
  172. matrix[k][SHADOWY+NY+j][i] = matrix[k+NZ][SHADOWY+j][i+NX];
  173. matrix[k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[k+NZ][SHADOWY+j][SHADOWX+i];
  174. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j+NY][i+NX];
  175. matrix[SHADOWZ+NZ+k][j][SHADOWX+NX+i] = matrix[SHADOWZ+k][j+NY][SHADOWX+i];
  176. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][i] = matrix[SHADOWZ+k][SHADOWY+j][i+NX];
  177. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[SHADOWZ+k][SHADOWY+j][SHADOWX+i];
  178. }
  179. FPRINTF(stderr,"IN Matrix:\n");
  180. for(k=0 ; k<NZ + 2*SHADOWZ ; k++)
  181. {
  182. for(j=0 ; j<NY + 2*SHADOWY ; j++)
  183. {
  184. for(i=0 ; i<NX + 2*SHADOWX ; i++)
  185. FPRINTF(stderr, "%5d ", matrix[k][j][i]);
  186. FPRINTF(stderr,"\n");
  187. }
  188. FPRINTF(stderr,"\n\n");
  189. }
  190. FPRINTF(stderr,"\n");
  191. ret = starpu_init(NULL);
  192. if (ret == -ENODEV)
  193. exit(77);
  194. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  195. /* Declare source matrix to StarPU */
  196. starpu_block_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix,
  197. NX + 2*SHADOWX, (NX + 2*SHADOWX) * (NY + 2*SHADOWY),
  198. NX + 2*SHADOWX, NY + 2*SHADOWY, NZ + 2*SHADOWZ,
  199. sizeof(matrix[0][0][0]));
  200. /* Declare destination matrix to StarPU */
  201. starpu_block_data_register(&handle2, STARPU_MAIN_RAM, (uintptr_t)matrix2,
  202. NX + PARTSX*2*SHADOWX, (NX + PARTSX*2*SHADOWX) * (NY + PARTSY*2*SHADOWY),
  203. NX + PARTSX*2*SHADOWX, NY + PARTSY*2*SHADOWY, NZ + PARTSZ*2*SHADOWZ,
  204. sizeof(matrix2[0][0][0]));
  205. /* Partition the source matrix in PARTSZ*PARTSY*PARTSX sub-matrices with shadows */
  206. /* NOTE: the resulting handles should only be used in read-only mode,
  207. * as StarPU will not know how the overlapping parts would have to be
  208. * combined. */
  209. struct starpu_data_filter fz =
  210. {
  211. .filter_func = starpu_block_filter_depth_block_shadow,
  212. .nchildren = PARTSZ,
  213. .filter_arg_ptr = (void*)(uintptr_t) SHADOWZ /* Shadow width */
  214. };
  215. struct starpu_data_filter fy =
  216. {
  217. .filter_func = starpu_block_filter_vertical_block_shadow,
  218. .nchildren = PARTSY,
  219. .filter_arg_ptr = (void*)(uintptr_t) SHADOWY /* Shadow width */
  220. };
  221. struct starpu_data_filter fx =
  222. {
  223. .filter_func = starpu_block_filter_block_shadow,
  224. .nchildren = PARTSX,
  225. .filter_arg_ptr = (void*)(uintptr_t) SHADOWX /* Shadow width */
  226. };
  227. starpu_data_map_filters(handle, 3, &fz, &fy, &fx);
  228. /* Partition the destination matrix in PARTSZ*PARTSY*PARTSX sub-matrices */
  229. struct starpu_data_filter fz2 =
  230. {
  231. .filter_func = starpu_block_filter_depth_block,
  232. .nchildren = PARTSZ,
  233. };
  234. struct starpu_data_filter fy2 =
  235. {
  236. .filter_func = starpu_block_filter_vertical_block,
  237. .nchildren = PARTSY,
  238. };
  239. struct starpu_data_filter fx2 =
  240. {
  241. .filter_func = starpu_block_filter_block,
  242. .nchildren = PARTSX,
  243. };
  244. starpu_data_map_filters(handle2, 3, &fz2, &fy2, &fx2);
  245. /* Submit a task on each sub-matrix */
  246. for (k=0; k<PARTSZ; k++)
  247. {
  248. for (j=0; j<PARTSY; j++)
  249. {
  250. for (i=0; i<PARTSX; i++)
  251. {
  252. starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 3, k, j, i);
  253. starpu_data_handle_t sub_handle2 = starpu_data_get_sub_data(handle2, 3, k, j, i);
  254. struct starpu_task *task = starpu_task_create();
  255. task->handles[0] = sub_handle;
  256. task->handles[1] = sub_handle2;
  257. task->cl = &cl;
  258. task->synchronous = 1;
  259. ret = starpu_task_submit(task);
  260. if (ret == -ENODEV) goto enodev;
  261. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  262. }
  263. }
  264. }
  265. starpu_data_unpartition(handle, STARPU_MAIN_RAM);
  266. starpu_data_unpartition(handle2, STARPU_MAIN_RAM);
  267. starpu_data_unregister(handle);
  268. starpu_data_unregister(handle2);
  269. starpu_shutdown();
  270. FPRINTF(stderr,"OUT Matrix:\n");
  271. for(k=0 ; k<NZ + PARTSZ*2*SHADOWZ ; k++)
  272. {
  273. for(j=0 ; j<NY + PARTSY*2*SHADOWY ; j++)
  274. {
  275. for(i=0 ; i<NX + PARTSX*2*SHADOWX ; i++) {
  276. FPRINTF(stderr, "%5d ", matrix2[k][j][i]);
  277. }
  278. FPRINTF(stderr,"\n");
  279. }
  280. FPRINTF(stderr,"\n\n");
  281. }
  282. FPRINTF(stderr,"\n");
  283. for(k=0 ; k<PARTSZ ; k++)
  284. for(j=0 ; j<PARTSY ; j++)
  285. for(i=0 ; i<PARTSX ; i++)
  286. for (n=0 ; n<NZ/PARTSZ + 2*SHADOWZ ; n++)
  287. for (m=0 ; m<NY/PARTSY + 2*SHADOWY ; m++)
  288. for (l=0 ; l<NX/PARTSX + 2*SHADOWX ; l++)
  289. STARPU_ASSERT(matrix2[k*(NZ/PARTSZ+2*SHADOWZ)+n][j*(NY/PARTSY+2*SHADOWY)+m][i*(NX/PARTSX+2*SHADOWX)+l] ==
  290. matrix[k*(NZ/PARTSZ)+n][j*(NY/PARTSY)+m][i*(NX/PARTSX)+l]);
  291. return 0;
  292. enodev:
  293. FPRINTF(stderr, "WARNING: No one can execute this task\n");
  294. starpu_shutdown();
  295. return 77;
  296. }