123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609 |
- /* dsytf2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dsytf2_(char *uplo, integer *n, doublereal *a, integer *
- lda, integer *ipiv, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1, d__2, d__3;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, k;
- doublereal t, r1, d11, d12, d21, d22;
- integer kk, kp;
- doublereal wk, wkm1, wkp1;
- integer imax, jmax;
- extern /* Subroutine */ int _starpu_dsyr_(char *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *);
- doublereal alpha;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer kstep;
- logical upper;
- doublereal absakk;
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern logical _starpu_disnan_(doublereal *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal colmax, rowmax;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYTF2 computes the factorization of a real symmetric matrix A using */
- /* the Bunch-Kaufman diagonal pivoting method: */
- /* A = U*D*U' or A = L*D*L' */
- /* where U (or L) is a product of permutation and unit upper (lower) */
- /* triangular matrices, U' is the transpose of U, and D is symmetric and */
- /* block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
- /* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the upper or lower triangular part of the */
- /* symmetric matrix A is stored: */
- /* = 'U': Upper triangular */
- /* = 'L': Lower triangular */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* n-by-n upper triangular part of A contains the upper */
- /* triangular part of the matrix A, and the strictly lower */
- /* triangular part of A is not referenced. If UPLO = 'L', the */
- /* leading n-by-n lower triangular part of A contains the lower */
- /* triangular part of the matrix A, and the strictly upper */
- /* triangular part of A is not referenced. */
- /* On exit, the block diagonal matrix D and the multipliers used */
- /* to obtain the factor U or L (see below for further details). */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* IPIV (output) INTEGER array, dimension (N) */
- /* Details of the interchanges and the block structure of D. */
- /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
- /* interchanged and D(k,k) is a 1-by-1 diagonal block. */
- /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
- /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
- /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
- /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
- /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -k, the k-th argument had an illegal value */
- /* > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
- /* has been completed, but the block diagonal matrix D is */
- /* exactly singular, and division by zero will occur if it */
- /* is used to solve a system of equations. */
- /* Further Details */
- /* =============== */
- /* 09-29-06 - patch from */
- /* Bobby Cheng, MathWorks */
- /* Replace l.204 and l.372 */
- /* IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
- /* by */
- /* IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN */
- /* 01-01-96 - Based on modifications by */
- /* J. Lewis, Boeing Computer Services Company */
- /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
- /* 1-96 - Based on modifications by J. Lewis, Boeing Computer Services */
- /* Company */
- /* If UPLO = 'U', then A = U*D*U', where */
- /* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
- /* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
- /* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
- /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
- /* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
- /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
- /* ( I v 0 ) k-s */
- /* U(k) = ( 0 I 0 ) s */
- /* ( 0 0 I ) n-k */
- /* k-s s n-k */
- /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
- /* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
- /* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
- /* If UPLO = 'L', then A = L*D*L', where */
- /* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
- /* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
- /* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
- /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
- /* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
- /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
- /* ( I 0 0 ) k-1 */
- /* L(k) = ( 0 I 0 ) s */
- /* ( 0 v I ) n-k-s+1 */
- /* k-1 s n-k-s+1 */
- /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
- /* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
- /* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --ipiv;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSYTF2", &i__1);
- return 0;
- }
- /* Initialize ALPHA for use in choosing pivot block size. */
- alpha = (sqrt(17.) + 1.) / 8.;
- if (upper) {
- /* Factorize A as U*D*U' using the upper triangle of A */
- /* K is the main loop index, decreasing from N to 1 in steps of */
- /* 1 or 2 */
- k = *n;
- L10:
- /* If K < 1, exit from loop */
- if (k < 1) {
- goto L70;
- }
- kstep = 1;
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
- absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value */
- if (k > 1) {
- i__1 = k - 1;
- imax = _starpu_idamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
- colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
- } else {
- colmax = 0.;
- }
- if (max(absakk,colmax) == 0. || _starpu_disnan_(&absakk)) {
- /* Column K is zero or contains a NaN: set INFO and continue */
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- } else {
- if (absakk >= alpha * colmax) {
- /* no interchange, use 1-by-1 pivot block */
- kp = k;
- } else {
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value */
- i__1 = k - imax;
- jmax = imax + _starpu_idamax_(&i__1, &a[imax + (imax + 1) * a_dim1],
- lda);
- rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
- if (imax > 1) {
- i__1 = imax - 1;
- jmax = _starpu_idamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
- /* Computing MAX */
- d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1],
- abs(d__1));
- rowmax = max(d__2,d__3);
- }
- if (absakk >= alpha * colmax * (colmax / rowmax)) {
- /* no interchange, use 1-by-1 pivot block */
- kp = k;
- } else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >=
- alpha * rowmax) {
- /* interchange rows and columns K and IMAX, use 1-by-1 */
- /* pivot block */
- kp = imax;
- } else {
- /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
- /* pivot block */
- kp = imax;
- kstep = 2;
- }
- }
- kk = k - kstep + 1;
- if (kp != kk) {
- /* Interchange rows and columns KK and KP in the leading */
- /* submatrix A(1:k,1:k) */
- i__1 = kp - 1;
- _starpu_dswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1],
- &c__1);
- i__1 = kk - kp - 1;
- _starpu_dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
- 1) * a_dim1], lda);
- t = a[kk + kk * a_dim1];
- a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
- a[kp + kp * a_dim1] = t;
- if (kstep == 2) {
- t = a[k - 1 + k * a_dim1];
- a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
- a[kp + k * a_dim1] = t;
- }
- }
- /* Update the leading submatrix */
- if (kstep == 1) {
- /* 1-by-1 pivot block D(k): column k now holds */
- /* W(k) = U(k)*D(k) */
- /* where U(k) is the k-th column of U */
- /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
- /* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
- r1 = 1. / a[k + k * a_dim1];
- i__1 = k - 1;
- d__1 = -r1;
- _starpu_dsyr_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &a[
- a_offset], lda);
- /* Store U(k) in column k */
- i__1 = k - 1;
- _starpu_dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
- } else {
- /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
- /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
- /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
- /* of U */
- /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
- /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
- /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
- if (k > 2) {
- d12 = a[k - 1 + k * a_dim1];
- d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
- d11 = a[k + k * a_dim1] / d12;
- t = 1. / (d11 * d22 - 1.);
- d12 = t / d12;
- for (j = k - 2; j >= 1; --j) {
- wkm1 = d12 * (d11 * a[j + (k - 1) * a_dim1] - a[j + k
- * a_dim1]);
- wk = d12 * (d22 * a[j + k * a_dim1] - a[j + (k - 1) *
- a_dim1]);
- for (i__ = j; i__ >= 1; --i__) {
- a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
- + k * a_dim1] * wk - a[i__ + (k - 1) *
- a_dim1] * wkm1;
- /* L20: */
- }
- a[j + k * a_dim1] = wk;
- a[j + (k - 1) * a_dim1] = wkm1;
- /* L30: */
- }
- }
- }
- }
- /* Store details of the interchanges in IPIV */
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -kp;
- ipiv[k - 1] = -kp;
- }
- /* Decrease K and return to the start of the main loop */
- k -= kstep;
- goto L10;
- } else {
- /* Factorize A as L*D*L' using the lower triangle of A */
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* 1 or 2 */
- k = 1;
- L40:
- /* If K > N, exit from loop */
- if (k > *n) {
- goto L70;
- }
- kstep = 1;
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
- absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value */
- if (k < *n) {
- i__1 = *n - k;
- imax = k + _starpu_idamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
- colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
- } else {
- colmax = 0.;
- }
- if (max(absakk,colmax) == 0. || _starpu_disnan_(&absakk)) {
- /* Column K is zero or contains a NaN: set INFO and continue */
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- } else {
- if (absakk >= alpha * colmax) {
- /* no interchange, use 1-by-1 pivot block */
- kp = k;
- } else {
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value */
- i__1 = imax - k;
- jmax = k - 1 + _starpu_idamax_(&i__1, &a[imax + k * a_dim1], lda);
- rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
- if (imax < *n) {
- i__1 = *n - imax;
- jmax = imax + _starpu_idamax_(&i__1, &a[imax + 1 + imax * a_dim1],
- &c__1);
- /* Computing MAX */
- d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1],
- abs(d__1));
- rowmax = max(d__2,d__3);
- }
- if (absakk >= alpha * colmax * (colmax / rowmax)) {
- /* no interchange, use 1-by-1 pivot block */
- kp = k;
- } else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >=
- alpha * rowmax) {
- /* interchange rows and columns K and IMAX, use 1-by-1 */
- /* pivot block */
- kp = imax;
- } else {
- /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
- /* pivot block */
- kp = imax;
- kstep = 2;
- }
- }
- kk = k + kstep - 1;
- if (kp != kk) {
- /* Interchange rows and columns KK and KP in the trailing */
- /* submatrix A(k:n,k:n) */
- if (kp < *n) {
- i__1 = *n - kp;
- _starpu_dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
- + kp * a_dim1], &c__1);
- }
- i__1 = kp - kk - 1;
- _starpu_dswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
- 1) * a_dim1], lda);
- t = a[kk + kk * a_dim1];
- a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
- a[kp + kp * a_dim1] = t;
- if (kstep == 2) {
- t = a[k + 1 + k * a_dim1];
- a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
- a[kp + k * a_dim1] = t;
- }
- }
- /* Update the trailing submatrix */
- if (kstep == 1) {
- /* 1-by-1 pivot block D(k): column k now holds */
- /* W(k) = L(k)*D(k) */
- /* where L(k) is the k-th column of L */
- if (k < *n) {
- /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
- /* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
- d11 = 1. / a[k + k * a_dim1];
- i__1 = *n - k;
- d__1 = -d11;
- _starpu_dsyr_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &c__1, &
- a[k + 1 + (k + 1) * a_dim1], lda);
- /* Store L(k) in column K */
- i__1 = *n - k;
- _starpu_dscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
- }
- } else {
- /* 2-by-2 pivot block D(k) */
- if (k < *n - 1) {
- /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
- /* A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))' */
- /* where L(k) and L(k+1) are the k-th and (k+1)-th */
- /* columns of L */
- d21 = a[k + 1 + k * a_dim1];
- d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
- d22 = a[k + k * a_dim1] / d21;
- t = 1. / (d11 * d22 - 1.);
- d21 = t / d21;
- i__1 = *n;
- for (j = k + 2; j <= i__1; ++j) {
- wk = d21 * (d11 * a[j + k * a_dim1] - a[j + (k + 1) *
- a_dim1]);
- wkp1 = d21 * (d22 * a[j + (k + 1) * a_dim1] - a[j + k
- * a_dim1]);
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
- + k * a_dim1] * wk - a[i__ + (k + 1) *
- a_dim1] * wkp1;
- /* L50: */
- }
- a[j + k * a_dim1] = wk;
- a[j + (k + 1) * a_dim1] = wkp1;
- /* L60: */
- }
- }
- }
- }
- /* Store details of the interchanges in IPIV */
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -kp;
- ipiv[k + 1] = -kp;
- }
- /* Increase K and return to the start of the main loop */
- k += kstep;
- goto L40;
- }
- L70:
- return 0;
- /* End of DSYTF2 */
- } /* _starpu_dsytf2_ */
|