123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- /* dlahr2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b4 = -1.;
- static doublereal c_b5 = 1.;
- static integer c__1 = 1;
- static doublereal c_b38 = 0.;
- /* Subroutine */ int _starpu_dlahr2_(integer *n, integer *k, integer *nb, doublereal *
- a, integer *lda, doublereal *tau, doublereal *t, integer *ldt,
- doublereal *y, integer *ldy)
- {
- /* System generated locals */
- integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
- i__3;
- doublereal d__1;
- /* Local variables */
- integer i__;
- doublereal ei;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *), _starpu_dgemm_(char *, char *, integer *, integer *, integer *
- , doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), _starpu_dgemv_(
- char *, integer *, integer *, doublereal *, doublereal *, integer
- *, doublereal *, integer *, doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, doublereal *, integer *, doublereal *,
- integer *), _starpu_dtrmm_(char *, char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *), _starpu_daxpy_(integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *),
- _starpu_dtrmv_(char *, char *, char *, integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlarfg_(
- integer *, doublereal *, doublereal *, integer *, doublereal *),
- _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1) */
- /* matrix A so that elements below the k-th subdiagonal are zero. The */
- /* reduction is performed by an orthogonal similarity transformation */
- /* Q' * A * Q. The routine returns the matrices V and T which determine */
- /* Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T. */
- /* This is an auxiliary routine called by DGEHRD. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. */
- /* K (input) INTEGER */
- /* The offset for the reduction. Elements below the k-th */
- /* subdiagonal in the first NB columns are reduced to zero. */
- /* K < N. */
- /* NB (input) INTEGER */
- /* The number of columns to be reduced. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1) */
- /* On entry, the n-by-(n-k+1) general matrix A. */
- /* On exit, the elements on and above the k-th subdiagonal in */
- /* the first NB columns are overwritten with the corresponding */
- /* elements of the reduced matrix; the elements below the k-th */
- /* subdiagonal, with the array TAU, represent the matrix Q as a */
- /* product of elementary reflectors. The other columns of A are */
- /* unchanged. See Further Details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* TAU (output) DOUBLE PRECISION array, dimension (NB) */
- /* The scalar factors of the elementary reflectors. See Further */
- /* Details. */
- /* T (output) DOUBLE PRECISION array, dimension (LDT,NB) */
- /* The upper triangular matrix T. */
- /* LDT (input) INTEGER */
- /* The leading dimension of the array T. LDT >= NB. */
- /* Y (output) DOUBLE PRECISION array, dimension (LDY,NB) */
- /* The n-by-nb matrix Y. */
- /* LDY (input) INTEGER */
- /* The leading dimension of the array Y. LDY >= N. */
- /* Further Details */
- /* =============== */
- /* The matrix Q is represented as a product of nb elementary reflectors */
- /* Q = H(1) H(2) . . . H(nb). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
- /* A(i+k+1:n,i), and tau in TAU(i). */
- /* The elements of the vectors v together form the (n-k+1)-by-nb matrix */
- /* V which is needed, with T and Y, to apply the transformation to the */
- /* unreduced part of the matrix, using an update of the form: */
- /* A := (I - V*T*V') * (A - Y*V'). */
- /* The contents of A on exit are illustrated by the following example */
- /* with n = 7, k = 3 and nb = 2: */
- /* ( a a a a a ) */
- /* ( a a a a a ) */
- /* ( a a a a a ) */
- /* ( h h a a a ) */
- /* ( v1 h a a a ) */
- /* ( v1 v2 a a a ) */
- /* ( v1 v2 a a a ) */
- /* where a denotes an element of the original matrix A, h denotes a */
- /* modified element of the upper Hessenberg matrix H, and vi denotes an */
- /* element of the vector defining H(i). */
- /* This file is a slight modification of LAPACK-3.0's DLAHRD */
- /* incorporating improvements proposed by Quintana-Orti and Van de */
- /* Gejin. Note that the entries of A(1:K,2:NB) differ from those */
- /* returned by the original LAPACK routine. This function is */
- /* not backward compatible with LAPACK3.0. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Quick return if possible */
- /* Parameter adjustments */
- --tau;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1;
- t -= t_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1;
- y -= y_offset;
- /* Function Body */
- if (*n <= 1) {
- return 0;
- }
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (i__ > 1) {
- /* Update A(K+1:N,I) */
- /* Update I-th column of A - Y * V' */
- i__2 = *n - *k;
- i__3 = i__ - 1;
- _starpu_dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &y[*k + 1 + y_dim1],
- ldy, &a[*k + i__ - 1 + a_dim1], lda, &c_b5, &a[*k + 1 +
- i__ * a_dim1], &c__1);
- /* Apply I - V * T' * V' to this column (call it b) from the */
- /* left, using the last column of T as workspace */
- /* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
- /* ( V2 ) ( b2 ) */
- /* where V1 is unit lower triangular */
- /* w := V1' * b1 */
- i__2 = i__ - 1;
- _starpu_dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
- 1], &c__1);
- i__2 = i__ - 1;
- _starpu_dtrmv_("Lower", "Transpose", "UNIT", &i__2, &a[*k + 1 + a_dim1],
- lda, &t[*nb * t_dim1 + 1], &c__1);
- /* w := w + V2'*b2 */
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1],
- lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb *
- t_dim1 + 1], &c__1);
- /* w := T'*w */
- i__2 = i__ - 1;
- _starpu_dtrmv_("Upper", "Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt,
- &t[*nb * t_dim1 + 1], &c__1);
- /* b2 := b2 - V2*w */
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1],
- lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ +
- i__ * a_dim1], &c__1);
- /* b1 := b1 - V1*w */
- i__2 = i__ - 1;
- _starpu_dtrmv_("Lower", "NO TRANSPOSE", "UNIT", &i__2, &a[*k + 1 + a_dim1]
- , lda, &t[*nb * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- _starpu_daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
- * a_dim1], &c__1);
- a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
- }
- /* Generate the elementary reflector H(I) to annihilate */
- /* A(K+I+1:N,I) */
- i__2 = *n - *k - i__ + 1;
- /* Computing MIN */
- i__3 = *k + i__ + 1;
- _starpu_dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[min(i__3, *n)+ i__ *
- a_dim1], &c__1, &tau[i__]);
- ei = a[*k + i__ + i__ * a_dim1];
- a[*k + i__ + i__ * a_dim1] = 1.;
- /* Compute Y(K+1:N,I) */
- i__2 = *n - *k;
- i__3 = *n - *k - i__ + 1;
- _starpu_dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b5, &a[*k + 1 + (i__ + 1) *
- a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[*
- k + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
- a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 +
- 1], &c__1);
- i__2 = *n - *k;
- i__3 = i__ - 1;
- _starpu_dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &y[*k + 1 + y_dim1], ldy,
- &t[i__ * t_dim1 + 1], &c__1, &c_b5, &y[*k + 1 + i__ * y_dim1],
- &c__1);
- i__2 = *n - *k;
- _starpu_dscal_(&i__2, &tau[i__], &y[*k + 1 + i__ * y_dim1], &c__1);
- /* Compute T(1:I,I) */
- i__2 = i__ - 1;
- d__1 = -tau[i__];
- _starpu_dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- _starpu_dtrmv_("Upper", "No Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt,
- &t[i__ * t_dim1 + 1], &c__1)
- ;
- t[i__ + i__ * t_dim1] = tau[i__];
- /* L10: */
- }
- a[*k + *nb + *nb * a_dim1] = ei;
- /* Compute Y(1:K,1:NB) */
- _starpu_dlacpy_("ALL", k, nb, &a[(a_dim1 << 1) + 1], lda, &y[y_offset], ldy);
- _starpu_dtrmm_("RIGHT", "Lower", "NO TRANSPOSE", "UNIT", k, nb, &c_b5, &a[*k + 1
- + a_dim1], lda, &y[y_offset], ldy);
- if (*n > *k + *nb) {
- i__1 = *n - *k - *nb;
- _starpu_dgemm_("NO TRANSPOSE", "NO TRANSPOSE", k, nb, &i__1, &c_b5, &a[(*nb +
- 2) * a_dim1 + 1], lda, &a[*k + 1 + *nb + a_dim1], lda, &c_b5,
- &y[y_offset], ldy);
- }
- _starpu_dtrmm_("RIGHT", "Upper", "NO TRANSPOSE", "NON-UNIT", k, nb, &c_b5, &t[
- t_offset], ldt, &y[y_offset], ldy);
- return 0;
- /* End of DLAHR2 */
- } /* _starpu_dlahr2_ */
|