123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- /* dgtts2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dgtts2_(integer *itrans, integer *n, integer *nrhs,
- doublereal *dl, doublereal *d__, doublereal *du, doublereal *du2,
- integer *ipiv, doublereal *b, integer *ldb)
- {
- /* System generated locals */
- integer b_dim1, b_offset, i__1, i__2;
- /* Local variables */
- integer i__, j, ip;
- doublereal temp;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGTTS2 solves one of the systems of equations */
- /* A*X = B or A'*X = B, */
- /* with a tridiagonal matrix A using the LU factorization computed */
- /* by DGTTRF. */
- /* Arguments */
- /* ========= */
- /* ITRANS (input) INTEGER */
- /* Specifies the form of the system of equations. */
- /* = 0: A * X = B (No transpose) */
- /* = 1: A'* X = B (Transpose) */
- /* = 2: A'* X = B (Conjugate transpose = Transpose) */
- /* N (input) INTEGER */
- /* The order of the matrix A. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* DL (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) multipliers that define the matrix L from the */
- /* LU factorization of A. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The n diagonal elements of the upper triangular matrix U from */
- /* the LU factorization of A. */
- /* DU (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) elements of the first super-diagonal of U. */
- /* DU2 (input) DOUBLE PRECISION array, dimension (N-2) */
- /* The (n-2) elements of the second super-diagonal of U. */
- /* IPIV (input) INTEGER array, dimension (N) */
- /* The pivot indices; for 1 <= i <= n, row i of the matrix was */
- /* interchanged with row IPIV(i). IPIV(i) will always be either */
- /* i or i+1; IPIV(i) = i indicates a row interchange was not */
- /* required. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the matrix of right hand side vectors B. */
- /* On exit, B is overwritten by the solution vectors X. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Quick return if possible */
- /* Parameter adjustments */
- --dl;
- --d__;
- --du;
- --du2;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- if (*n == 0 || *nrhs == 0) {
- return 0;
- }
- if (*itrans == 0) {
- /* Solve A*X = B using the LU factorization of A, */
- /* overwriting each right hand side vector with its solution. */
- if (*nrhs <= 1) {
- j = 1;
- L10:
- /* Solve L*x = b. */
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ip = ipiv[i__];
- temp = b[i__ + 1 - ip + i__ + j * b_dim1] - dl[i__] * b[ip +
- j * b_dim1];
- b[i__ + j * b_dim1] = b[ip + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = temp;
- /* L20: */
- }
- /* Solve U*x = b. */
- b[*n + j * b_dim1] /= d__[*n];
- if (*n > 1) {
- b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1]
- * b[*n + j * b_dim1]) / d__[*n - 1];
- }
- for (i__ = *n - 2; i__ >= 1; --i__) {
- b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__
- + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j * b_dim1]
- ) / d__[i__];
- /* L30: */
- }
- if (j < *nrhs) {
- ++j;
- goto L10;
- }
- } else {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- /* Solve L*x = b. */
- i__2 = *n - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (ipiv[i__] == i__) {
- b[i__ + 1 + j * b_dim1] -= dl[i__] * b[i__ + j *
- b_dim1];
- } else {
- temp = b[i__ + j * b_dim1];
- b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = temp - dl[i__] * b[i__ + j *
- b_dim1];
- }
- /* L40: */
- }
- /* Solve U*x = b. */
- b[*n + j * b_dim1] /= d__[*n];
- if (*n > 1) {
- b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n
- - 1] * b[*n + j * b_dim1]) / d__[*n - 1];
- }
- for (i__ = *n - 2; i__ >= 1; --i__) {
- b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[
- i__ + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j *
- b_dim1]) / d__[i__];
- /* L50: */
- }
- /* L60: */
- }
- }
- } else {
- /* Solve A' * X = B. */
- if (*nrhs <= 1) {
- /* Solve U'*x = b. */
- j = 1;
- L70:
- b[j * b_dim1 + 1] /= d__[1];
- if (*n > 1) {
- b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * b_dim1
- + 1]) / d__[2];
- }
- i__1 = *n;
- for (i__ = 3; i__ <= i__1; ++i__) {
- b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] * b[
- i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 2 + j *
- b_dim1]) / d__[i__];
- /* L80: */
- }
- /* Solve L'*x = b. */
- for (i__ = *n - 1; i__ >= 1; --i__) {
- ip = ipiv[i__];
- temp = b[i__ + j * b_dim1] - dl[i__] * b[i__ + 1 + j * b_dim1]
- ;
- b[i__ + j * b_dim1] = b[ip + j * b_dim1];
- b[ip + j * b_dim1] = temp;
- /* L90: */
- }
- if (j < *nrhs) {
- ++j;
- goto L70;
- }
- } else {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- /* Solve U'*x = b. */
- b[j * b_dim1 + 1] /= d__[1];
- if (*n > 1) {
- b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j *
- b_dim1 + 1]) / d__[2];
- }
- i__2 = *n;
- for (i__ = 3; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] *
- b[i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ -
- 2 + j * b_dim1]) / d__[i__];
- /* L100: */
- }
- for (i__ = *n - 1; i__ >= 1; --i__) {
- if (ipiv[i__] == i__) {
- b[i__ + j * b_dim1] -= dl[i__] * b[i__ + 1 + j *
- b_dim1];
- } else {
- temp = b[i__ + 1 + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - dl[
- i__] * temp;
- b[i__ + j * b_dim1] = temp;
- }
- /* L110: */
- }
- /* L120: */
- }
- }
- }
- /* End of DGTTS2 */
- return 0;
- } /* _starpu_dgtts2_ */
|