parallel_tasks_reuse_handle.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2015, 2017 INRIA
  4. * Copyright (C) 2015, 2016, 2017 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include <starpu.h>
  18. #include <omp.h>
  19. #include <pthread.h>
  20. #ifdef STARPU_QUICK_CHECK
  21. #define NTASKS 64
  22. #define SIZE 40
  23. #define LOOPS 4
  24. #else
  25. #define NTASKS 100
  26. #define SIZE 400
  27. #define LOOPS 10
  28. #endif
  29. #define N_NESTED_CTXS 2
  30. struct context
  31. {
  32. int ncpus;
  33. int *cpus;
  34. unsigned id;
  35. };
  36. /* Helper for the task that will initiate everything */
  37. void parallel_task_prologue_init_once_and_for_all(void * sched_ctx_)
  38. {
  39. fprintf(stderr, "%p: %s -->\n", (void*)pthread_self(), __func__);
  40. int sched_ctx = *(int *)sched_ctx_;
  41. int *cpuids = NULL;
  42. int ncpuids = 0;
  43. starpu_sched_ctx_get_available_cpuids(sched_ctx, &cpuids, &ncpuids);
  44. #pragma omp parallel num_threads(ncpuids)
  45. {
  46. starpu_sched_ctx_bind_current_thread_to_cpuid(cpuids[omp_get_thread_num()]);
  47. }
  48. omp_set_num_threads(ncpuids);
  49. free(cpuids);
  50. fprintf(stderr, "%p: %s <--\n", (void*)pthread_self(), __func__);
  51. return;
  52. }
  53. void noop(void * buffers[], void * cl_arg)
  54. {
  55. (void)buffers;
  56. (void)cl_arg;
  57. }
  58. static struct starpu_codelet init_parallel_worker_cl=
  59. {
  60. .cpu_funcs = {noop},
  61. .nbuffers = 0,
  62. .name = "init_parallel_worker"
  63. };
  64. /* function called to initialize the parallel "workers" */
  65. void parallel_task_init_one_context(unsigned * context_id)
  66. {
  67. struct starpu_task * t;
  68. int ret;
  69. t = starpu_task_build(&init_parallel_worker_cl,
  70. STARPU_SCHED_CTX, *context_id,
  71. 0);
  72. t->destroy = 1;
  73. t->prologue_callback_pop_func=parallel_task_prologue_init_once_and_for_all;
  74. if (t->prologue_callback_pop_arg_free)
  75. free(t->prologue_callback_pop_arg);
  76. t->prologue_callback_pop_arg=context_id;
  77. t->prologue_callback_pop_arg_free=0;
  78. ret = starpu_task_submit(t);
  79. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  80. }
  81. struct context main_context;
  82. struct context *contexts;
  83. void parallel_task_init()
  84. {
  85. /* Context creation */
  86. main_context.ncpus = starpu_cpu_worker_get_count();
  87. main_context.cpus = (int *) malloc(main_context.ncpus*sizeof(int));
  88. fprintf(stderr, "ncpus : %d \n",main_context.ncpus);
  89. starpu_worker_get_ids_by_type(STARPU_CPU_WORKER, main_context.cpus, main_context.ncpus);
  90. main_context.id = starpu_sched_ctx_create(main_context.cpus,
  91. main_context.ncpus,"main_ctx",
  92. STARPU_SCHED_CTX_POLICY_NAME,"prio",
  93. 0);
  94. /* Initialize nested contexts */
  95. contexts = malloc(sizeof(struct context)*N_NESTED_CTXS);
  96. int cpus_per_context = main_context.ncpus/N_NESTED_CTXS;
  97. int i;
  98. for(i = 0; i < N_NESTED_CTXS; i++)
  99. {
  100. contexts[i].ncpus = cpus_per_context;
  101. if (i == N_NESTED_CTXS-1)
  102. contexts[i].ncpus += main_context.ncpus%N_NESTED_CTXS;
  103. contexts[i].cpus = main_context.cpus+i*cpus_per_context;
  104. }
  105. for(i = 0; i < N_NESTED_CTXS; i++)
  106. contexts[i].id = starpu_sched_ctx_create(contexts[i].cpus,
  107. contexts[i].ncpus,"nested_ctx",
  108. STARPU_SCHED_CTX_NESTED,main_context.id,
  109. 0);
  110. for (i = 0; i < N_NESTED_CTXS; i++)
  111. {
  112. parallel_task_init_one_context(&contexts[i].id);
  113. }
  114. starpu_task_wait_for_all();
  115. starpu_sched_ctx_set_context(&main_context.id);
  116. }
  117. void parallel_task_deinit()
  118. {
  119. int i;
  120. for (i=0; i<N_NESTED_CTXS;i++)
  121. starpu_sched_ctx_delete(contexts[i].id);
  122. free(contexts);
  123. free(main_context.cpus);
  124. }
  125. /* Codelet SUM */
  126. static void sum_cpu(void * descr[], void *cl_arg)
  127. {
  128. (void)cl_arg;
  129. double *v_dst = (double *) STARPU_VECTOR_GET_PTR(descr[0]);
  130. double *v_src0 = (double *) STARPU_VECTOR_GET_PTR(descr[1]);
  131. double *v_src1 = (double *) STARPU_VECTOR_GET_PTR(descr[2]);
  132. int size = STARPU_VECTOR_GET_NX(descr[0]);
  133. int i, k;
  134. for (k=0;k<LOOPS;k++)
  135. {
  136. #pragma omp parallel for
  137. for (i=0; i<size; i++)
  138. {
  139. v_dst[i]+=v_src0[i]+v_src1[i];
  140. }
  141. }
  142. }
  143. static struct starpu_codelet sum_cl =
  144. {
  145. .cpu_funcs = {sum_cpu, NULL},
  146. .nbuffers = 3,
  147. .modes={STARPU_RW,STARPU_R, STARPU_R}
  148. };
  149. int main(void)
  150. {
  151. int ntasks = NTASKS;
  152. int ret, j, k;
  153. unsigned ncpus = 0;
  154. ret = starpu_init(NULL);
  155. if (ret == -ENODEV)
  156. return 77;
  157. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  158. if (starpu_cpu_worker_get_count() < N_NESTED_CTXS)
  159. {
  160. starpu_shutdown();
  161. return 77;
  162. }
  163. parallel_task_init();
  164. /* Data preparation */
  165. double array1[SIZE];
  166. double array2[SIZE];
  167. memset(array1, 0, sizeof(double));
  168. int i;
  169. for (i=0;i<SIZE;i++)
  170. {
  171. array2[i]=i*2;
  172. }
  173. starpu_data_handle_t handle1;
  174. starpu_data_handle_t handle2;
  175. starpu_vector_data_register(&handle1, 0, (uintptr_t)array1, SIZE, sizeof(double));
  176. starpu_vector_data_register(&handle2, 0, (uintptr_t)array2, SIZE, sizeof(double));
  177. for (i = 0; i < ntasks; i++)
  178. {
  179. struct starpu_task * t;
  180. t=starpu_task_build(&sum_cl,
  181. STARPU_RW,handle1,
  182. STARPU_R,handle2,
  183. STARPU_R,handle1,
  184. STARPU_SCHED_CTX, main_context.id,
  185. 0);
  186. t->destroy = 1;
  187. t->possibly_parallel = 1;
  188. ret=starpu_task_submit(t);
  189. if (ret == -ENODEV)
  190. goto out;
  191. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  192. }
  193. out:
  194. /* wait for all tasks at the end*/
  195. starpu_task_wait_for_all();
  196. starpu_data_unregister(handle1);
  197. starpu_data_unregister(handle2);
  198. parallel_task_deinit();
  199. starpu_shutdown();
  200. return 0;
  201. }