starpu.texi 173 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @titlepage
  9. @title StarPU Handbook
  10. @subtitle for StarPU @value{VERSION}
  11. @page
  12. @vskip 0pt plus 1fill
  13. @comment For the @value{version-GCC} Version*
  14. @end titlepage
  15. @c @summarycontents
  16. @contents
  17. @page
  18. @node Top
  19. @top Preface
  20. @cindex Preface
  21. This manual documents the usage of StarPU version @value{VERSION}. It
  22. was last updated on @value{UPDATED}.
  23. @comment
  24. @comment When you add a new menu item, please keep the right hand
  25. @comment aligned to the same column. Do not use tabs. This provides
  26. @comment better formatting.
  27. @comment
  28. @menu
  29. * Introduction:: A basic introduction to using StarPU
  30. * Installing StarPU:: How to configure, build and install StarPU
  31. * Using StarPU:: How to run StarPU application
  32. * Basic Examples:: Basic examples of the use of StarPU
  33. * Performance optimization:: How to optimize performance with StarPU
  34. * Performance feedback:: Performance debugging tools
  35. * StarPU MPI support:: How to combine StarPU with MPI
  36. * Configuring StarPU:: How to configure StarPU
  37. * StarPU API:: The API to use StarPU
  38. * Advanced Topics:: Advanced use of StarPU
  39. * Full source code for the 'Scaling a Vector' example::
  40. * Function Index:: Index of C functions.
  41. @end menu
  42. @c ---------------------------------------------------------------------
  43. @c Introduction to StarPU
  44. @c ---------------------------------------------------------------------
  45. @node Introduction
  46. @chapter Introduction to StarPU
  47. @menu
  48. * Motivation:: Why StarPU ?
  49. * StarPU in a Nutshell:: The Fundamentals of StarPU
  50. @end menu
  51. @node Motivation
  52. @section Motivation
  53. @c complex machines with heterogeneous cores/devices
  54. The use of specialized hardware such as accelerators or coprocessors offers an
  55. interesting approach to overcome the physical limits encountered by processor
  56. architects. As a result, many machines are now equipped with one or several
  57. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  58. efforts have been devoted to offload computation onto such accelerators, very
  59. little attention as been paid to portability concerns on the one hand, and to the
  60. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  61. StarPU is a runtime system that offers support for heterogeneous multicore
  62. architectures, it not only offers a unified view of the computational resources
  63. (i.e. CPUs and accelerators at the same time), but it also takes care of
  64. efficiently mapping and executing tasks onto an heterogeneous machine while
  65. transparently handling low-level issues such as data transfers in a portable
  66. fashion.
  67. @c this leads to a complicated distributed memory design
  68. @c which is not (easily) manageable by hand
  69. @c added value/benefits of StarPU
  70. @c - portability
  71. @c - scheduling, perf. portability
  72. @node StarPU in a Nutshell
  73. @section StarPU in a Nutshell
  74. @menu
  75. * Codelet and Tasks::
  76. * StarPU Data Management Library::
  77. * Research Papers::
  78. @end menu
  79. From a programming point of view, StarPU is not a new language but a library
  80. that executes tasks explicitly submitted by the application. The data that a
  81. task manipulates are automatically transferred onto the accelerator so that the
  82. programmer does not have to take care of complex data movements. StarPU also
  83. takes particular care of scheduling those tasks efficiently and allows
  84. scheduling experts to implement custom scheduling policies in a portable
  85. fashion.
  86. @c explain the notion of codelet and task (i.e. g(A, B)
  87. @node Codelet and Tasks
  88. @subsection Codelet and Tasks
  89. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  90. computational kernel that can possibly be implemented on multiple architectures
  91. such as a CPU, a CUDA device or a Cell's SPU.
  92. @c TODO insert illustration f : f_spu, f_cpu, ...
  93. Another important data structure is the @b{task}. Executing a StarPU task
  94. consists in applying a codelet on a data set, on one of the architectures on
  95. which the codelet is implemented. In addition to the codelet that a task
  96. useuses, it also describes which data are accessed, and how they are
  97. accessed during the computation (read and/or write).
  98. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  99. operation. The task structure can also specify a @b{callback} function that is
  100. called once StarPU has properly executed the task. It also contains optional
  101. fields that the application may use to give hints to the scheduler (such as
  102. priority levels).
  103. A task may be identified by a unique 64-bit number chosen by the application
  104. which we refer as a @b{tag}.
  105. Task dependencies can be enforced either by the means of callback functions, by
  106. expressing dependencies between explicit tasks or by expressing dependencies
  107. between tags (which can thus correspond to tasks that have not been submitted
  108. yet).
  109. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  110. @c DSM
  111. @node StarPU Data Management Library
  112. @subsection StarPU Data Management Library
  113. Because StarPU schedules tasks at runtime, data transfers have to be
  114. done automatically and ``just-in-time'' between processing units,
  115. relieving the application programmer from explicit data transfers.
  116. Moreover, to avoid unnecessary transfers, StarPU keeps data
  117. where it was last needed, even if was modified there, and it
  118. allows multiple copies of the same data to reside at the same time on
  119. several processing units as long as it is not modified.
  120. @node Research Papers
  121. @subsection Research Papers
  122. Research papers about StarPU can be found at
  123. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  124. Notably a good overview in the research report
  125. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  126. @c ---------------------------------------------------------------------
  127. @c Installing StarPU
  128. @c ---------------------------------------------------------------------
  129. @node Installing StarPU
  130. @chapter Installing StarPU
  131. @menu
  132. * Downloading StarPU::
  133. * Configuration of StarPU::
  134. * Building and Installing StarPU::
  135. @end menu
  136. StarPU can be built and installed by the standard means of the GNU
  137. autotools. The following chapter is intended to briefly remind how these tools
  138. can be used to install StarPU.
  139. @node Downloading StarPU
  140. @section Downloading StarPU
  141. @menu
  142. * Getting Sources::
  143. * Optional dependencies::
  144. @end menu
  145. @node Getting Sources
  146. @subsection Getting Sources
  147. The simplest way to get StarPU sources is to download the latest official
  148. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  149. or the latest nightly snapshot from
  150. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  151. how to get the very latest version from the subversion repository itself, it
  152. should be needed only if you need the very latest changes (i.e. less than a
  153. day!)
  154. The source code is managed by a Subversion server hosted by the
  155. InriaGforge. To get the source code, you need:
  156. @itemize
  157. @item
  158. To install the client side of the software Subversion if it is
  159. not already available on your system. The software can be obtained from
  160. @indicateurl{http://subversion.tigris.org} . If you are running
  161. on Windows, you will probably prefer to use TortoiseSVN from
  162. @indicateurl{http://tortoisesvn.tigris.org/} .
  163. @item
  164. You can check out the project's SVN repository through anonymous
  165. access. This will provide you with a read access to the
  166. repository.
  167. If you need to have write access on the StarPU project, you can also choose to
  168. become a member of the project @code{starpu}. For this, you first need to get
  169. an account to the gForge server. You can then send a request to join the project
  170. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  171. @item
  172. More information on how to get a gForge account, to become a member of
  173. a project, or on any other related task can be obtained from the
  174. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  175. thing is to upload your public SSH key on the gForge server (see the
  176. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  177. instructions).
  178. @end itemize
  179. You can now check out the latest version from the Subversion server:
  180. @itemize
  181. @item
  182. using the anonymous access via svn:
  183. @example
  184. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  185. @end example
  186. @item
  187. using the anonymous access via https:
  188. @example
  189. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  190. @end example
  191. The password is @code{anonsvn}.
  192. @item
  193. using your gForge account
  194. @example
  195. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  196. @end example
  197. @end itemize
  198. The following step requires the availability of @code{autoconf} and
  199. @code{automake} to generate the @code{./configure} script. This is
  200. done by calling @code{./autogen.sh}. The required version for
  201. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  202. @example
  203. % ./autogen.sh
  204. @end example
  205. If the autotools are not available on your machine or not recent
  206. enough, you can choose to download the latest nightly tarball, which
  207. is provided with a @code{configure} script.
  208. @example
  209. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  210. @end example
  211. @node Optional dependencies
  212. @subsection Optional dependencies
  213. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  214. but strongly recommended. It allows to increase performance, and to
  215. perform some topology aware scheduling.
  216. @code{hwloc} is available in major distributions and for most OSes and can be
  217. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  218. @node Configuration of StarPU
  219. @section Configuration of StarPU
  220. @menu
  221. * Generating Makefiles and configuration scripts::
  222. * Running the configuration::
  223. @end menu
  224. @node Generating Makefiles and configuration scripts
  225. @subsection Generating Makefiles and configuration scripts
  226. This step is not necessary when using the tarball releases of StarPU. If you
  227. are using the source code from the svn repository, you first need to generate
  228. the configure scripts and the Makefiles.
  229. @example
  230. % ./autogen.sh
  231. @end example
  232. @node Running the configuration
  233. @subsection Running the configuration
  234. @example
  235. % ./configure
  236. @end example
  237. Details about options that are useful to give to @code{./configure} are given in
  238. @ref{Compilation configuration}.
  239. @node Building and Installing StarPU
  240. @section Building and Installing StarPU
  241. @menu
  242. * Building::
  243. * Sanity Checks::
  244. * Installing::
  245. @end menu
  246. @node Building
  247. @subsection Building
  248. @example
  249. % make
  250. @end example
  251. @node Sanity Checks
  252. @subsection Sanity Checks
  253. In order to make sure that StarPU is working properly on the system, it is also
  254. possible to run a test suite.
  255. @example
  256. % make check
  257. @end example
  258. @node Installing
  259. @subsection Installing
  260. In order to install StarPU at the location that was specified during
  261. configuration:
  262. @example
  263. % make install
  264. @end example
  265. @c ---------------------------------------------------------------------
  266. @c Using StarPU
  267. @c ---------------------------------------------------------------------
  268. @node Using StarPU
  269. @chapter Using StarPU
  270. @menu
  271. * Setting flags for compiling and linking applications::
  272. * Running a basic StarPU application::
  273. * Kernel threads started by StarPU::
  274. * Using accelerators::
  275. @end menu
  276. @node Setting flags for compiling and linking applications
  277. @section Setting flags for compiling and linking applications
  278. Compiling and linking an application against StarPU may require to use
  279. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  280. To this end, it is possible to use the @code{pkg-config} tool.
  281. If StarPU was not installed at some standard location, the path of StarPU's
  282. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  283. that @code{pkg-config} can find it. For example if StarPU was installed in
  284. @code{$prefix_dir}:
  285. @example
  286. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  287. @end example
  288. The flags required to compile or link against StarPU are then
  289. accessible with the following commands:
  290. @example
  291. % pkg-config --cflags libstarpu # options for the compiler
  292. % pkg-config --libs libstarpu # options for the linker
  293. @end example
  294. @node Running a basic StarPU application
  295. @section Running a basic StarPU application
  296. Basic examples using StarPU have been built in the directory
  297. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  298. example @code{vector_scal}.
  299. @example
  300. % $prefix_dir/lib/starpu/examples/vector_scal
  301. BEFORE : First element was 1.000000
  302. AFTER First element is 3.140000
  303. %
  304. @end example
  305. When StarPU is used for the first time, the directory
  306. @code{$HOME/.starpu/} is created, performance models will be stored in
  307. that directory.
  308. Please note that buses are benchmarked when StarPU is launched for the
  309. first time. This may take a few minutes, or less if @code{hwloc} is
  310. installed. This step is done only once per user and per machine.
  311. @node Kernel threads started by StarPU
  312. @section Kernel threads started by StarPU
  313. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  314. them per GPU. The application is not supposed to do computations in its own
  315. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  316. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  317. worker).
  318. @node Using accelerators
  319. @section Using accelerators
  320. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  321. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  322. This design choice was necessary as OpenCL and CUDA can not run at the
  323. same time on the same NVIDIA GPU, as there is currently no interoperability
  324. between them.
  325. Details on how to specify devices running OpenCL and the ones running
  326. CUDA are given in @ref{Enabling OpenCL}.
  327. @c ---------------------------------------------------------------------
  328. @c Basic Examples
  329. @c ---------------------------------------------------------------------
  330. @node Basic Examples
  331. @chapter Basic Examples
  332. @menu
  333. * Compiling and linking options::
  334. * Hello World:: Submitting Tasks
  335. * Scaling a Vector:: Manipulating Data
  336. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  337. * Task and Worker Profiling::
  338. * Partitioning Data:: Partitioning Data
  339. * Performance model example::
  340. * Theoretical lower bound on execution time::
  341. * Insert Task Utility::
  342. * More examples:: More examples shipped with StarPU
  343. * Debugging:: When things go wrong.
  344. @end menu
  345. @node Compiling and linking options
  346. @section Compiling and linking options
  347. Let's suppose StarPU has been installed in the directory
  348. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  349. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  350. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  351. libraries at runtime.
  352. @example
  353. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  354. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  355. @end example
  356. The Makefile could for instance contain the following lines to define which
  357. options must be given to the compiler and to the linker:
  358. @cartouche
  359. @example
  360. CFLAGS += $$(pkg-config --cflags libstarpu)
  361. LDFLAGS += $$(pkg-config --libs libstarpu)
  362. @end example
  363. @end cartouche
  364. @node Hello World
  365. @section Hello World
  366. @menu
  367. * Required Headers::
  368. * Defining a Codelet::
  369. * Submitting a Task::
  370. * Execution of Hello World::
  371. @end menu
  372. In this section, we show how to implement a simple program that submits a task to StarPU.
  373. @node Required Headers
  374. @subsection Required Headers
  375. The @code{starpu.h} header should be included in any code using StarPU.
  376. @cartouche
  377. @smallexample
  378. #include <starpu.h>
  379. @end smallexample
  380. @end cartouche
  381. @node Defining a Codelet
  382. @subsection Defining a Codelet
  383. @cartouche
  384. @smallexample
  385. struct params @{
  386. int i;
  387. float f;
  388. @};
  389. void cpu_func(void *buffers[], void *cl_arg)
  390. @{
  391. struct params *params = cl_arg;
  392. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  393. @}
  394. starpu_codelet cl =
  395. @{
  396. .where = STARPU_CPU,
  397. .cpu_func = cpu_func,
  398. .nbuffers = 0
  399. @};
  400. @end smallexample
  401. @end cartouche
  402. A codelet is a structure that represents a computational kernel. Such a codelet
  403. may contain an implementation of the same kernel on different architectures
  404. (e.g. CUDA, Cell's SPU, x86, ...).
  405. The @code{nbuffers} field specifies the number of data buffers that are
  406. manipulated by the codelet: here the codelet does not access or modify any data
  407. that is controlled by our data management library. Note that the argument
  408. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  409. structure) does not count as a buffer since it is not managed by our data
  410. management library, but just contain trivial parameters.
  411. @c TODO need a crossref to the proper description of "where" see bla for more ...
  412. We create a codelet which may only be executed on the CPUs. The @code{where}
  413. field is a bitmask that defines where the codelet may be executed. Here, the
  414. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  415. (@pxref{Codelets and Tasks} for more details on this field).
  416. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  417. which @emph{must} have the following prototype:
  418. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  419. In this example, we can ignore the first argument of this function which gives a
  420. description of the input and output buffers (e.g. the size and the location of
  421. the matrices) since there is none.
  422. The second argument is a pointer to a buffer passed as an
  423. argument to the codelet by the means of the @code{cl_arg} field of the
  424. @code{starpu_task} structure.
  425. @c TODO rewrite so that it is a little clearer ?
  426. Be aware that this may be a pointer to a
  427. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  428. if the codelet modifies this buffer, there is no guarantee that the initial
  429. buffer will be modified as well: this for instance implies that the buffer
  430. cannot be used as a synchronization medium. If synchronization is needed, data
  431. has to be registered to StarPU, see @ref{Scaling a Vector}.
  432. @node Submitting a Task
  433. @subsection Submitting a Task
  434. @cartouche
  435. @smallexample
  436. void callback_func(void *callback_arg)
  437. @{
  438. printf("Callback function (arg %x)\n", callback_arg);
  439. @}
  440. int main(int argc, char **argv)
  441. @{
  442. /* @b{initialize StarPU} */
  443. starpu_init(NULL);
  444. struct starpu_task *task = starpu_task_create();
  445. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  446. struct params params = @{ 1, 2.0f @};
  447. task->cl_arg = &params;
  448. task->cl_arg_size = sizeof(params);
  449. task->callback_func = callback_func;
  450. task->callback_arg = 0x42;
  451. /* @b{starpu_task_submit will be a blocking call} */
  452. task->synchronous = 1;
  453. /* @b{submit the task to StarPU} */
  454. starpu_task_submit(task);
  455. /* @b{terminate StarPU} */
  456. starpu_shutdown();
  457. return 0;
  458. @}
  459. @end smallexample
  460. @end cartouche
  461. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  462. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  463. be submitted after the termination of StarPU by a call to
  464. @code{starpu_shutdown}.
  465. In the example above, a task structure is allocated by a call to
  466. @code{starpu_task_create}. This function only allocates and fills the
  467. corresponding structure with the default settings (@pxref{Codelets and
  468. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  469. @c not really clear ;)
  470. The @code{cl} field is a pointer to the codelet which the task will
  471. execute: in other words, the codelet structure describes which computational
  472. kernel should be offloaded on the different architectures, and the task
  473. structure is a wrapper containing a codelet and the piece of data on which the
  474. codelet should operate.
  475. The optional @code{cl_arg} field is a pointer to a buffer (of size
  476. @code{cl_arg_size}) with some parameters for the kernel
  477. described by the codelet. For instance, if a codelet implements a computational
  478. kernel that multiplies its input vector by a constant, the constant could be
  479. specified by the means of this buffer, instead of registering it as a StarPU
  480. data. It must however be noted that StarPU avoids making copy whenever possible
  481. and rather passes the pointer as such, so the buffer which is pointed at must
  482. kept allocated until the task terminates, and if several tasks are submitted
  483. with various parameters, each of them must be given a pointer to their own
  484. buffer.
  485. Once a task has been executed, an optional callback function is be called.
  486. While the computational kernel could be offloaded on various architectures, the
  487. callback function is always executed on a CPU. The @code{callback_arg}
  488. pointer is passed as an argument of the callback. The prototype of a callback
  489. function must be:
  490. @code{void (*callback_function)(void *);}
  491. If the @code{synchronous} field is non-zero, task submission will be
  492. synchronous: the @code{starpu_task_submit} function will not return until the
  493. task was executed. Note that the @code{starpu_shutdown} method does not
  494. guarantee that asynchronous tasks have been executed before it returns,
  495. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  496. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  497. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  498. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  499. @code{starpu_data_set_sequential_consistency_flag}.
  500. @node Execution of Hello World
  501. @subsection Execution of Hello World
  502. @smallexample
  503. % make hello_world
  504. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  505. % ./hello_world
  506. Hello world (params = @{1, 2.000000@} )
  507. Callback function (arg 42)
  508. @end smallexample
  509. @node Scaling a Vector
  510. @section Manipulating Data: Scaling a Vector
  511. The previous example has shown how to submit tasks. In this section,
  512. we show how StarPU tasks can manipulate data. The full source code for
  513. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  514. @menu
  515. * Source code of Vector Scaling::
  516. * Execution of Vector Scaling::
  517. @end menu
  518. @node Source code of Vector Scaling
  519. @subsection Source code of Vector Scaling
  520. Programmers can describe the data layout of their application so that StarPU is
  521. responsible for enforcing data coherency and availability across the machine.
  522. Instead of handling complex (and non-portable) mechanisms to perform data
  523. movements, programmers only declare which piece of data is accessed and/or
  524. modified by a task, and StarPU makes sure that when a computational kernel
  525. starts somewhere (e.g. on a GPU), its data are available locally.
  526. Before submitting those tasks, the programmer first needs to declare the
  527. different pieces of data to StarPU using the @code{starpu_*_data_register}
  528. functions. To ease the development of applications for StarPU, it is possible
  529. to describe multiple types of data layout. A type of data layout is called an
  530. @b{interface}. There are different predefined interfaces available in StarPU:
  531. here we will consider the @b{vector interface}.
  532. The following lines show how to declare an array of @code{NX} elements of type
  533. @code{float} using the vector interface:
  534. @cartouche
  535. @smallexample
  536. float vector[NX];
  537. starpu_data_handle vector_handle;
  538. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  539. sizeof(vector[0]));
  540. @end smallexample
  541. @end cartouche
  542. The first argument, called the @b{data handle}, is an opaque pointer which
  543. designates the array in StarPU. This is also the structure which is used to
  544. describe which data is used by a task. The second argument is the node number
  545. where the data originally resides. Here it is 0 since the @code{vector} array is in
  546. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  547. the number of elements in the vector and the size of each element.
  548. The following shows how to construct a StarPU task that will manipulate the
  549. vector and a constant factor.
  550. @cartouche
  551. @smallexample
  552. float factor = 3.14;
  553. struct starpu_task *task = starpu_task_create();
  554. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  555. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  556. task->buffers[0].mode = STARPU_RW;
  557. task->cl_arg = &factor;
  558. task->cl_arg_size = sizeof(factor);
  559. task->synchronous = 1;
  560. starpu_task_submit(task);
  561. @end smallexample
  562. @end cartouche
  563. Since the factor is a mere constant float value parameter,
  564. it does not need a preliminary registration, and
  565. can just be passed through the @code{cl_arg} pointer like in the previous
  566. example. The vector parameter is described by its handle.
  567. There are two fields in each element of the @code{buffers} array.
  568. @code{handle} is the handle of the data, and @code{mode} specifies how the
  569. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  570. write-only and @code{STARPU_RW} for read and write access).
  571. The definition of the codelet can be written as follows:
  572. @cartouche
  573. @smallexample
  574. void scal_cpu_func(void *buffers[], void *cl_arg)
  575. @{
  576. unsigned i;
  577. float *factor = cl_arg;
  578. /* length of the vector */
  579. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  580. /* CPU copy of the vector pointer */
  581. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  582. for (i = 0; i < n; i++)
  583. val[i] *= *factor;
  584. @}
  585. starpu_codelet cl = @{
  586. .where = STARPU_CPU,
  587. .cpu_func = scal_cpu_func,
  588. .nbuffers = 1
  589. @};
  590. @end smallexample
  591. @end cartouche
  592. The first argument is an array that gives
  593. a description of all the buffers passed in the @code{task->buffers}@ array. The
  594. size of this array is given by the @code{nbuffers} field of the codelet
  595. structure. For the sake of genericity, this array contains pointers to the
  596. different interfaces describing each buffer. In the case of the @b{vector
  597. interface}, the location of the vector (resp. its length) is accessible in the
  598. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  599. read-write fashion, any modification will automatically affect future accesses
  600. to this vector made by other tasks.
  601. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  602. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  603. constant factor from this pointer.
  604. @node Execution of Vector Scaling
  605. @subsection Execution of Vector Scaling
  606. @smallexample
  607. % make vector_scal
  608. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  609. % ./vector_scal
  610. 0.000000 3.000000 6.000000 9.000000 12.000000
  611. @end smallexample
  612. @node Vector Scaling on an Hybrid CPU/GPU Machine
  613. @section Vector Scaling on an Hybrid CPU/GPU Machine
  614. Contrary to the previous examples, the task submitted in this example may not
  615. only be executed by the CPUs, but also by a CUDA device.
  616. @menu
  617. * Definition of the CUDA Kernel::
  618. * Definition of the OpenCL Kernel::
  619. * Definition of the Main Code::
  620. * Execution of Hybrid Vector Scaling::
  621. @end menu
  622. @node Definition of the CUDA Kernel
  623. @subsection Definition of the CUDA Kernel
  624. The CUDA implementation can be written as follows. It needs to be compiled with
  625. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  626. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  627. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  628. call.
  629. @cartouche
  630. @smallexample
  631. #include <starpu.h>
  632. static __global__ void vector_mult_cuda(float *val, unsigned n,
  633. float factor)
  634. @{
  635. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  636. if (i < n)
  637. val[i] *= factor;
  638. @}
  639. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  640. @{
  641. float *factor = (float *)_args;
  642. /* length of the vector */
  643. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  644. /* CUDA copy of the vector pointer */
  645. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  646. unsigned threads_per_block = 64;
  647. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  648. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  649. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  650. @}
  651. @end smallexample
  652. @end cartouche
  653. @node Definition of the OpenCL Kernel
  654. @subsection Definition of the OpenCL Kernel
  655. The OpenCL implementation can be written as follows. StarPU provides
  656. tools to compile a OpenCL kernel stored in a file.
  657. @cartouche
  658. @smallexample
  659. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  660. @{
  661. const int i = get_global_id(0);
  662. if (i < nx) @{
  663. val[i] *= factor;
  664. @}
  665. @}
  666. @end smallexample
  667. @end cartouche
  668. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  669. a device pointer, so that it is passed as such to the OpenCL kernel.
  670. @cartouche
  671. @smallexample
  672. #include <starpu.h>
  673. @i{#include <starpu_opencl.h>}
  674. @i{extern struct starpu_opencl_program programs;}
  675. void scal_opencl_func(void *buffers[], void *_args)
  676. @{
  677. float *factor = _args;
  678. @i{ int id, devid, err;}
  679. @i{ cl_kernel kernel;}
  680. @i{ cl_command_queue queue;}
  681. @i{ cl_event event;}
  682. /* length of the vector */
  683. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  684. /* OpenCL copy of the vector pointer */
  685. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  686. @i{ id = starpu_worker_get_id();}
  687. @i{ devid = starpu_worker_get_devid(id);}
  688. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  689. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  690. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  691. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  692. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  693. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  694. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  695. @i{ @{}
  696. @i{ size_t global=1;}
  697. @i{ size_t local=1;}
  698. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  699. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  700. @i{ @}}
  701. @i{ clFinish(queue);}
  702. @i{ starpu_opencl_collect_stats(event);}
  703. @i{ clReleaseEvent(event);}
  704. @i{ starpu_opencl_release_kernel(kernel);}
  705. @}
  706. @end smallexample
  707. @end cartouche
  708. @node Definition of the Main Code
  709. @subsection Definition of the Main Code
  710. The CPU implementation is the same as in the previous section.
  711. Here is the source of the main application. You can notice the value of the
  712. field @code{where} for the codelet. We specify
  713. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  714. can be executed either on a CPU or on a CUDA or an OpenCL device.
  715. @cartouche
  716. @smallexample
  717. #include <starpu.h>
  718. #define NX 2048
  719. extern void scal_cuda_func(void *buffers[], void *_args);
  720. extern void scal_cpu_func(void *buffers[], void *_args);
  721. extern void scal_opencl_func(void *buffers[], void *_args);
  722. /* @b{Definition of the codelet} */
  723. static starpu_codelet cl = @{
  724. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  725. /* @b{on a CUDA device, or on an OpenCL device} */
  726. .cuda_func = scal_cuda_func;
  727. .cpu_func = scal_cpu_func;
  728. .opencl_func = scal_opencl_func;
  729. .nbuffers = 1;
  730. @}
  731. #ifdef STARPU_USE_OPENCL
  732. /* @b{The compiled version of the OpenCL program} */
  733. struct starpu_opencl_program programs;
  734. #endif
  735. int main(int argc, char **argv)
  736. @{
  737. float *vector;
  738. int i, ret;
  739. float factor=3.0;
  740. struct starpu_task *task;
  741. starpu_data_handle vector_handle;
  742. starpu_init(NULL); /* @b{Initialising StarPU} */
  743. #ifdef STARPU_USE_OPENCL
  744. starpu_opencl_load_opencl_from_file(
  745. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  746. &programs, NULL);
  747. #endif
  748. vector = malloc(NX*sizeof(vector[0]));
  749. assert(vector);
  750. for(i=0 ; i<NX ; i++) vector[i] = i;
  751. @end smallexample
  752. @end cartouche
  753. @cartouche
  754. @smallexample
  755. /* @b{Registering data within StarPU} */
  756. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  757. NX, sizeof(vector[0]));
  758. /* @b{Definition of the task} */
  759. task = starpu_task_create();
  760. task->cl = &cl;
  761. task->buffers[0].handle = vector_handle;
  762. task->buffers[0].mode = STARPU_RW;
  763. task->cl_arg = &factor;
  764. task->cl_arg_size = sizeof(factor);
  765. @end smallexample
  766. @end cartouche
  767. @cartouche
  768. @smallexample
  769. /* @b{Submitting the task} */
  770. ret = starpu_task_submit(task);
  771. if (ret == -ENODEV) @{
  772. fprintf(stderr, "No worker may execute this task\n");
  773. return 1;
  774. @}
  775. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  776. /* @b{Waiting for its termination} */
  777. starpu_task_wait_for_all();
  778. /* @b{Update the vector in RAM} */
  779. starpu_data_acquire(vector_handle, STARPU_R);
  780. @end smallexample
  781. @end cartouche
  782. @cartouche
  783. @smallexample
  784. /* @b{Access the data} */
  785. for(i=0 ; i<NX; i++) @{
  786. fprintf(stderr, "%f ", vector[i]);
  787. @}
  788. fprintf(stderr, "\n");
  789. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  790. starpu_data_release(vector_handle);
  791. starpu_data_unregister(vector_handle);
  792. starpu_shutdown();
  793. return 0;
  794. @}
  795. @end smallexample
  796. @end cartouche
  797. @node Execution of Hybrid Vector Scaling
  798. @subsection Execution of Hybrid Vector Scaling
  799. The Makefile given at the beginning of the section must be extended to
  800. give the rules to compile the CUDA source code. Note that the source
  801. file of the OpenCL kernel does not need to be compiled now, it will
  802. be compiled at run-time when calling the function
  803. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  804. @cartouche
  805. @smallexample
  806. CFLAGS += $(shell pkg-config --cflags libstarpu)
  807. LDFLAGS += $(shell pkg-config --libs libstarpu)
  808. CC = gcc
  809. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  810. %.o: %.cu
  811. nvcc $(CFLAGS) $< -c $@
  812. clean:
  813. rm -f vector_scal *.o
  814. @end smallexample
  815. @end cartouche
  816. @smallexample
  817. % make
  818. @end smallexample
  819. and to execute it, with the default configuration:
  820. @smallexample
  821. % ./vector_scal
  822. 0.000000 3.000000 6.000000 9.000000 12.000000
  823. @end smallexample
  824. or for example, by disabling CPU devices:
  825. @smallexample
  826. % STARPU_NCPUS=0 ./vector_scal
  827. 0.000000 3.000000 6.000000 9.000000 12.000000
  828. @end smallexample
  829. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  830. see @ref{Using accelerators}):
  831. @smallexample
  832. % STARPU_NCUDA=0 ./vector_scal
  833. 0.000000 3.000000 6.000000 9.000000 12.000000
  834. @end smallexample
  835. @node Task and Worker Profiling
  836. @section Task and Worker Profiling
  837. A full example showing how to use the profiling API is available in
  838. the StarPU sources in the directory @code{examples/profiling/}.
  839. @cartouche
  840. @smallexample
  841. struct starpu_task *task = starpu_task_create();
  842. task->cl = &cl;
  843. task->synchronous = 1;
  844. /* We will destroy the task structure by hand so that we can
  845. * query the profiling info before the task is destroyed. */
  846. task->destroy = 0;
  847. /* Submit and wait for completion (since synchronous was set to 1) */
  848. starpu_task_submit(task);
  849. /* The task is finished, get profiling information */
  850. struct starpu_task_profiling_info *info = task->profiling_info;
  851. /* How much time did it take before the task started ? */
  852. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  853. /* How long was the task execution ? */
  854. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  855. /* We don't need the task structure anymore */
  856. starpu_task_destroy(task);
  857. @end smallexample
  858. @end cartouche
  859. @cartouche
  860. @smallexample
  861. /* Display the occupancy of all workers during the test */
  862. int worker;
  863. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  864. @{
  865. struct starpu_worker_profiling_info worker_info;
  866. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  867. STARPU_ASSERT(!ret);
  868. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  869. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  870. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  871. float executing_ratio = 100.0*executing_time/total_time;
  872. float sleeping_ratio = 100.0*sleeping_time/total_time;
  873. char workername[128];
  874. starpu_worker_get_name(worker, workername, 128);
  875. fprintf(stderr, "Worker %s:\n", workername);
  876. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  877. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  878. executing_ratio);
  879. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  880. sleeping_ratio);
  881. @}
  882. @end smallexample
  883. @end cartouche
  884. @node Partitioning Data
  885. @section Partitioning Data
  886. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  887. @cartouche
  888. @smallexample
  889. int vector[NX];
  890. starpu_data_handle handle;
  891. /* Declare data to StarPU */
  892. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  893. /* Partition the vector in PARTS sub-vectors */
  894. starpu_filter f =
  895. @{
  896. .filter_func = starpu_block_filter_func_vector,
  897. .nchildren = PARTS,
  898. .get_nchildren = NULL,
  899. .get_child_ops = NULL
  900. @};
  901. starpu_data_partition(handle, &f);
  902. @end smallexample
  903. @end cartouche
  904. @cartouche
  905. @smallexample
  906. /* Submit a task on each sub-vector */
  907. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  908. /* Get subdata number i (there is only 1 dimension) */
  909. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  910. struct starpu_task *task = starpu_task_create();
  911. task->buffers[0].handle = sub_handle;
  912. task->buffers[0].mode = STARPU_RW;
  913. task->cl = &cl;
  914. task->synchronous = 1;
  915. task->cl_arg = &factor;
  916. task->cl_arg_size = sizeof(factor);
  917. starpu_task_submit(task);
  918. @}
  919. @end smallexample
  920. @end cartouche
  921. Partitioning can be applied several times, see
  922. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  923. @node Performance model example
  924. @section Performance model example
  925. To achieve good scheduling, StarPU scheduling policies need to be able to
  926. estimate in advance the duration of a task. This is done by giving to codelets a
  927. performance model. There are several kinds of performance models.
  928. @itemize
  929. @item
  930. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  931. see for instance
  932. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  933. @item
  934. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  935. given set of data input/output sizes, the performance will always be about the
  936. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  937. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  938. few different sets of data input/output sizes. StarPU will then keep record of
  939. the average time of previous executions on the various processing units, and use
  940. it as an estimation. History is done per task size, by using a hash of the input
  941. and ouput sizes as an index.
  942. It will also save it in @code{~/.starpu/sampling/codelets}
  943. for further executions, and can be observed by using the
  944. @code{starpu_perfmodel_display} command. The following is a small code example.
  945. @cartouche
  946. @smallexample
  947. static struct starpu_perfmodel_t mult_perf_model = @{
  948. .type = STARPU_HISTORY_BASED,
  949. .symbol = "mult_perf_model"
  950. @};
  951. starpu_codelet cl = @{
  952. .where = STARPU_CPU,
  953. .cpu_func = cpu_mult,
  954. .nbuffers = 3,
  955. /* for the scheduling policy to be able to use performance models */
  956. .model = &mult_perf_model
  957. @};
  958. @end smallexample
  959. @end cartouche
  960. @item
  961. Measured at runtime and refined by regression (STARPU_REGRESSION_*_BASED
  962. model type). This still assumes performance regularity, but can work
  963. with various data input sizes, by applying regression over observed
  964. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  965. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  966. STARPU_REGRESSION_BASED, but costs a lot more to compute)
  967. @item
  968. Provided explicitly by the application (STARPU_PER_ARCH model type): the
  969. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  970. functions which return the expected duration of the task in micro-seconds, one
  971. per architecture.
  972. @end itemize
  973. How to use schedulers which can benefit from such performance model is explained
  974. in @ref{Task scheduling policy}.
  975. The same can be done for task power consumption estimation, by setting the
  976. @code{power_model} field the same way as the @code{model} field. Note: for
  977. now, the application has to give to the power consumption performance model
  978. a name which is different from the execution time performance model.
  979. @node Theoretical lower bound on execution time
  980. @section Theoretical lower bound on execution time
  981. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  982. bound for the execution time of a whole set of tasks. See for
  983. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  984. call @code{starpu_bound_start}, and after complete execution, call
  985. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  986. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  987. problem corresponding to the schedule of your tasks. Run it through
  988. @code{lp_solve} or any other linear programming solver, and that will give you a
  989. lower bound for the total execution time of your tasks. If StarPU was compiled
  990. with the glpk library installed, @code{starpu_bound_compute} can be used to
  991. solve it immediately and get the optimized minimum. Its @code{integer}
  992. parameter allows to decide whether integer resolution should be computed
  993. and returned.
  994. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  995. dependencies into account. It must be understood that the linear programming
  996. problem size is quadratic with the number of tasks and thus the time to solve it
  997. will be very long, it could be minutes for just a few dozen tasks. You should
  998. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  999. problem to MPS format and then use a better solver, @code{glpsol} might be
  1000. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1001. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1002. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1003. of @code{lp_solve}. For instance, we often just use
  1004. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1005. the @code{-gr} option can also be quite useful.
  1006. Setting @code{deps} to 0 will only take into account the actual computations
  1007. on processing units. It however still properly takes into account the varying
  1008. performances of kernels and processing units, which is quite more accurate than
  1009. just comparing StarPU performances with the fastest of the kernels being used.
  1010. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1011. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1012. tasks before less prioritized tasks, to check to which extend this results
  1013. to a less optimal solution. This increases even more computation time.
  1014. Note that for simplicity, all this however doesn't take into account data
  1015. transfers, which are assumed to be completely overlapped.
  1016. @node Insert Task Utility
  1017. @section Insert Task Utility
  1018. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1019. the creation and submission of tasks.
  1020. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1021. Create and submit a task corresponding to @var{cl} with the following
  1022. arguments. The argument list must be zero-terminated.
  1023. The arguments following the codelets can be of the following types:
  1024. @itemize
  1025. @item
  1026. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1027. @item
  1028. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1029. the size of the constant;
  1030. @item
  1031. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1032. @item
  1033. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1034. argument to the callback function;
  1035. @item
  1036. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1037. @end itemize
  1038. Parameters to be passed to the codelet implementation are defined
  1039. through the type @code{STARPU_VALUE}. The function
  1040. @code{starpu_unpack_cl_args} must be called within the codelet
  1041. implementation to retrieve them.
  1042. @end deftypefun
  1043. Here the implementation of the codelet:
  1044. @smallexample
  1045. void func_cpu(void *descr[], void *_args)
  1046. @{
  1047. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1048. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1049. int ifactor;
  1050. float ffactor;
  1051. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1052. *x0 = *x0 * ifactor;
  1053. *x1 = *x1 * ffactor;
  1054. @}
  1055. starpu_codelet mycodelet = @{
  1056. .where = STARPU_CPU,
  1057. .cpu_func = func_cpu,
  1058. .nbuffers = 2
  1059. @};
  1060. @end smallexample
  1061. And the call to the @code{starpu_insert_task} wrapper:
  1062. @smallexample
  1063. starpu_insert_task(&mycodelet,
  1064. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1065. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1066. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1067. 0);
  1068. @end smallexample
  1069. The call to @code{starpu_insert_task} is equivalent to the following
  1070. code:
  1071. @smallexample
  1072. struct starpu_task *task = starpu_task_create();
  1073. task->cl = &mycodelet;
  1074. task->buffers[0].handle = data_handles[0];
  1075. task->buffers[0].mode = STARPU_RW;
  1076. task->buffers[1].handle = data_handles[1];
  1077. task->buffers[1].mode = STARPU_RW;
  1078. char *arg_buffer;
  1079. size_t arg_buffer_size;
  1080. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1081. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1082. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1083. 0);
  1084. task->cl_arg = arg_buffer;
  1085. task->cl_arg_size = arg_buffer_size;
  1086. int ret = starpu_task_submit(task);
  1087. @end smallexample
  1088. @node Debugging
  1089. @section Debugging
  1090. StarPU provides several tools to help debugging aplications. Execution traces
  1091. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1092. gdb helpers are also provided to show the whole StarPU state:
  1093. @smallexample
  1094. (gdb) source tools/gdbinit
  1095. (gdb) help starpu
  1096. @end smallexample
  1097. @node More examples
  1098. @section More examples
  1099. More examples are available in the StarPU sources in the @code{examples/}
  1100. directory. Simple examples include:
  1101. @table @asis
  1102. @item @code{incrementer/}:
  1103. Trivial incrementation test.
  1104. @item @code{basic_examples/}:
  1105. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1106. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1107. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1108. interface, and an example using the variable data interface.
  1109. @item @code{matvecmult/}:
  1110. OpenCL example from NVidia, adapted to StarPU.
  1111. @item @code{axpy/}:
  1112. AXPY CUBLAS operation adapted to StarPU.
  1113. @item @code{fortran/}:
  1114. Example of Fortran bindings.
  1115. @end table
  1116. More advanced examples include:
  1117. @table @asis
  1118. @item @code{filters/}:
  1119. Examples using filters, as shown in @ref{Partitioning Data}.
  1120. @item @code{lu/}:
  1121. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1122. @item @code{cholesky/}:
  1123. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1124. @end table
  1125. @c ---------------------------------------------------------------------
  1126. @c Performance options
  1127. @c ---------------------------------------------------------------------
  1128. @node Performance optimization
  1129. @chapter How to optimize performance with StarPU
  1130. TODO: improve!
  1131. @menu
  1132. * Data management::
  1133. * Task submission::
  1134. * Task priorities::
  1135. * Task scheduling policy::
  1136. * Task distribution vs Data transfer::
  1137. * Data prefetch::
  1138. * Power-based scheduling::
  1139. * Profiling::
  1140. * CUDA-specific optimizations::
  1141. @end menu
  1142. Simply encapsulating application kernels into tasks already permits to
  1143. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1144. few additional changes are needed.
  1145. @node Data management
  1146. @section Data management
  1147. By default, StarPU leaves replicates of data wherever they were used, in case they
  1148. will be re-used by other tasks, thus saving the data transfer time. When some
  1149. task modifies some data, all the other replicates are invalidated, and only the
  1150. processing unit will have a valid replicate of the data. If the application knows
  1151. that this data will not be re-used by further tasks, it should advise StarPU to
  1152. immediately replicate it to a desired list of memory nodes (given through a
  1153. bitmask). This can be understood like the write-through mode of CPU caches.
  1154. @example
  1155. starpu_data_set_wt_mask(img_handle, 1<<0);
  1156. @end example
  1157. will for instance request to always transfer a replicate into the main memory (node
  1158. 0), as bit 0 of the write-through bitmask is being set.
  1159. When the application allocates data, whenever possible it should use the
  1160. @code{starpu_malloc} function, which will ask CUDA or
  1161. OpenCL to make the allocation itself and pin the corresponding allocated
  1162. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1163. transfer to overlap with computations.
  1164. @node Task submission
  1165. @section Task submission
  1166. To let StarPU make online optimizations, tasks should be submitted
  1167. asynchronously as much as possible. Ideally, all the tasks should be
  1168. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1169. @code{starpu_data_unregister} be done to wait for
  1170. termination. StarPU will then be able to rework the whole schedule, overlap
  1171. computation with communication, manage accelerator local memory usage, etc.
  1172. @node Task priorities
  1173. @section Task priorities
  1174. By default, StarPU will consider the tasks in the order they are submitted by
  1175. the application. If the application programmer knows that some tasks should
  1176. be performed in priority (for instance because their output is needed by many
  1177. other tasks and may thus be a bottleneck if not executed early enough), the
  1178. @code{priority} field of the task structure should be set to transmit the
  1179. priority information to StarPU.
  1180. @node Task scheduling policy
  1181. @section Task scheduling policy
  1182. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1183. because it provides correct load balance even if the application codelets do not
  1184. have performance models. If your application codelets have performance models
  1185. (@pxref{Performance model example} for examples showing how to do it),
  1186. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1187. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1188. the list of available schedulers.
  1189. @c TODO: give some details about each scheduler.
  1190. Most schedulers are based on an estimation of codelet duration on each kind
  1191. of processing unit. For this to be possible, the application programmer needs
  1192. to configure a performance model for the codelets of the application (see
  1193. @ref{Performance model example} for instance). History-based performance models
  1194. use on-line calibration. StarPU will automatically calibrate codelets
  1195. which have never been calibrated yet. To force continuing calibration, use
  1196. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1197. have not-so-stable performance. Details on the current performance model status
  1198. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1199. option lists the available performance models, and the @code{-s} option permits
  1200. to choose the performance model to be displayed. The result looks like:
  1201. @example
  1202. € starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1203. performance model for cpu
  1204. # hash size mean dev n
  1205. 5c6c3401 1572864 1.216300e+04 2.277778e+03 1240
  1206. @end example
  1207. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1208. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1209. 1240 samples. It is a good idea to check this before doing actual performance
  1210. measurements.
  1211. If a kernel source code was modified (e.g. performance improvement), the
  1212. calibration information is stale and should be dropped, to re-calibrate from
  1213. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1214. Note: due to CUDA limitations, to be able to measure kernel duration,
  1215. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1216. disables data transfer / computation overlapping, and should thus not be used
  1217. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1218. only if a performance-model-based scheduler is chosen.
  1219. @node Task distribution vs Data transfer
  1220. @section Task distribution vs Data transfer
  1221. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1222. thus needs to find a balance between both. The target function that the
  1223. @code{dmda} scheduler of StarPU
  1224. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1225. @code{T_execution} is the estimated execution time of the codelet (usually
  1226. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1227. latter is however estimated based on bus calibration before execution start,
  1228. i.e. with an idle machine. You can force bus re-calibration by running
  1229. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1230. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1231. This is of course imprecise, but in practice, a rough estimation already gives
  1232. the good results that a precise estimation would give.
  1233. @node Data prefetch
  1234. @section Data prefetch
  1235. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1236. as soon as a scheduling decision is taken for a task, requests are issued to
  1237. transfer its required data to the target processing unit, if needeed, so that
  1238. when the processing unit actually starts the task, its data will hopefully be
  1239. already available and it will not have to wait for the transfer to finish.
  1240. The application may want to perform some manual prefetching, for several reasons
  1241. such as excluding initial data transfers from performance measurements, or
  1242. setting up an initial statically-computed data distribution on the machine
  1243. before submitting tasks, which will thus guide StarPU toward an initial task
  1244. distribution (since StarPU will try to avoid further transfers).
  1245. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1246. the handle and the desired target memory node.
  1247. @node Power-based scheduling
  1248. @section Power-based scheduling
  1249. If the application can provide some power performance model (through
  1250. the @code{power_model} field of the codelet structure), StarPU will
  1251. take it into account when distributing tasks. The target function that
  1252. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1253. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1254. is the estimated task consumption in Joules. To tune this parameter, use
  1255. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1256. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1257. alpha and beta to zero permits to only take into account power consumption.
  1258. This is however not sufficient to correctly optimize power: the scheduler would
  1259. simply tend to run all computations on the most energy-conservative processing
  1260. unit. To account for the consumption of the whole machine (including idle
  1261. processing units), the idle power of the machine should be given by setting
  1262. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1263. be obtained from the machine power supplier.
  1264. The power actually consumed by the total execution can be displayed by setting
  1265. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1266. @node Profiling
  1267. @section Profiling
  1268. A quick view of how many tasks each worker has executed can be obtained by setting
  1269. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1270. execution did happen on accelerators without penalizing performance with
  1271. the profiling overhead.
  1272. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1273. calling @code{starpu_profiling_status_set} from the source code.
  1274. Statistics on the execution can then be obtained by using @code{export
  1275. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1276. More details on performance feedback are provided by the next chapter.
  1277. @node CUDA-specific optimizations
  1278. @section CUDA-specific optimizations
  1279. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1280. communications and the codelet computations if the application does not use a
  1281. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1282. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1283. operations. For instance:
  1284. @example
  1285. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1286. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1287. @end example
  1288. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1289. kernels. That will lower the potential for overlapping.
  1290. @c ---------------------------------------------------------------------
  1291. @c Performance feedback
  1292. @c ---------------------------------------------------------------------
  1293. @node Performance feedback
  1294. @chapter Performance feedback
  1295. @menu
  1296. * On-line:: On-line performance feedback
  1297. * Off-line:: Off-line performance feedback
  1298. * Codelet performance:: Performance of codelets
  1299. @end menu
  1300. @node On-line
  1301. @section On-line performance feedback
  1302. @menu
  1303. * Enabling monitoring:: Enabling on-line performance monitoring
  1304. * Task feedback:: Per-task feedback
  1305. * Codelet feedback:: Per-codelet feedback
  1306. * Worker feedback:: Per-worker feedback
  1307. * Bus feedback:: Bus-related feedback
  1308. @end menu
  1309. @node Enabling monitoring
  1310. @subsection Enabling on-line performance monitoring
  1311. In order to enable online performance monitoring, the application can call
  1312. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1313. detect whether monitoring is already enabled or not by calling
  1314. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1315. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1316. can also be set to 1 to achieve the same effect.
  1317. Likewise, performance monitoring is stopped by calling
  1318. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1319. does not reset the performance counters so that the application may consult
  1320. them later on.
  1321. More details about the performance monitoring API are available in section
  1322. @ref{Profiling API}.
  1323. @node Task feedback
  1324. @subsection Per-task feedback
  1325. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1326. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1327. structure when a task terminates.
  1328. This structure is automatically destroyed when the task structure is destroyed,
  1329. either automatically or by calling @code{starpu_task_destroy}.
  1330. The @code{starpu_task_profiling_info} structure indicates the date when the
  1331. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1332. terminated (@code{end_time}), relative to the initialization of
  1333. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1334. that has executed the task (@code{workerid}).
  1335. These date are stored as @code{timespec} structures which the user may convert
  1336. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1337. function.
  1338. It it worth noting that the application may directly access this structure from
  1339. the callback executed at the end of the task. The @code{starpu_task} structure
  1340. associated to the callback currently being executed is indeed accessible with
  1341. the @code{starpu_get_current_task()} function.
  1342. @node Codelet feedback
  1343. @subsection Per-codelet feedback
  1344. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1345. an array of counters. The i-th entry of the array is incremented every time a
  1346. task implementing the codelet is executed on the i-th worker.
  1347. This array is not reinitialized when profiling is enabled or disabled.
  1348. @node Worker feedback
  1349. @subsection Per-worker feedback
  1350. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1351. function is a @code{starpu_worker_profiling_info} structure that gives
  1352. statistics about the specified worker. This structure specifies when StarPU
  1353. started collecting profiling information for that worker (@code{start_time}),
  1354. the duration of the profiling measurement interval (@code{total_time}), the
  1355. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1356. because there is no task to execute at all (@code{sleeping_time}), and the
  1357. number of tasks that were executed while profiling was enabled.
  1358. These values give an estimation of the proportion of time spent do real work,
  1359. and the time spent either sleeping because there are not enough executable
  1360. tasks or simply wasted in pure StarPU overhead.
  1361. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1362. information associated to a worker.
  1363. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1364. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1365. generate a graphic showing the evolution of these values during the time, for
  1366. the different workers.
  1367. @node Bus feedback
  1368. @subsection Bus-related feedback
  1369. TODO
  1370. @c how to enable/disable performance monitoring
  1371. @c what kind of information do we get ?
  1372. @node Off-line
  1373. @section Off-line performance feedback
  1374. @menu
  1375. * Generating traces:: Generating traces with FxT
  1376. * Gantt diagram:: Creating a Gantt Diagram
  1377. * DAG:: Creating a DAG with graphviz
  1378. * starpu-top:: Monitoring activity
  1379. @end menu
  1380. @node Generating traces
  1381. @subsection Generating traces with FxT
  1382. StarPU can use the FxT library (see
  1383. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1384. with a limited runtime overhead.
  1385. You can either get the FxT library from CVS (autotools are required):
  1386. @example
  1387. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1388. % ./bootstrap
  1389. @end example
  1390. If autotools are not available on your machine, or if you prefer to do so,
  1391. FxT's code is also available as a tarball:
  1392. @example
  1393. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1394. @end example
  1395. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1396. done following the standard procedure:
  1397. @example
  1398. % ./configure --prefix=$FXTDIR
  1399. % make
  1400. % make install
  1401. @end example
  1402. In order to have StarPU to generate traces, StarPU should be configured with
  1403. the @code{--with-fxt} option:
  1404. @example
  1405. $ ./configure --with-fxt=$FXTDIR
  1406. @end example
  1407. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1408. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1409. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1410. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1411. @code{/tmp/} directory by default, or by the directory specified by
  1412. the @code{STARPU_FXT_PREFIX} environment variable.
  1413. @node Gantt diagram
  1414. @subsection Creating a Gantt Diagram
  1415. When the FxT trace file @code{filename} has been generated, it is possible to
  1416. generate a trace in the Paje format by calling:
  1417. @example
  1418. % starpu_fxt_tool -i filename
  1419. @end example
  1420. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1421. to 1 before application execution will make StarPU do it automatically at
  1422. application shutdown.
  1423. This will create a @code{paje.trace} file in the current directory that can be
  1424. inspected with the ViTE trace visualizing open-source tool. More information
  1425. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1426. possible to open the @code{paje.trace} file with ViTE by using the following
  1427. command:
  1428. @example
  1429. % vite paje.trace
  1430. @end example
  1431. @node DAG
  1432. @subsection Creating a DAG with graphviz
  1433. When the FxT trace file @code{filename} has been generated, it is possible to
  1434. generate a task graph in the DOT format by calling:
  1435. @example
  1436. $ starpu_fxt_tool -i filename
  1437. @end example
  1438. This will create a @code{dag.dot} file in the current directory. This file is a
  1439. task graph described using the DOT language. It is possible to get a
  1440. graphical output of the graph by using the graphviz library:
  1441. @example
  1442. $ dot -Tpdf dag.dot -o output.pdf
  1443. @end example
  1444. @node starpu-top
  1445. @subsection Monitoring activity
  1446. When the FxT trace file @code{filename} has been generated, it is possible to
  1447. generate a activity trace by calling:
  1448. @example
  1449. $ starpu_fxt_tool -i filename
  1450. @end example
  1451. This will create an @code{activity.data} file in the current
  1452. directory. A profile of the application showing the activity of StarPU
  1453. during the execution of the program can be generated:
  1454. @example
  1455. $ starpu_top.sh activity.data
  1456. @end example
  1457. This will create a file named @code{activity.eps} in the current directory.
  1458. This picture is composed of two parts.
  1459. The first part shows the activity of the different workers. The green sections
  1460. indicate which proportion of the time was spent executed kernels on the
  1461. processing unit. The red sections indicate the proportion of time spent in
  1462. StartPU: an important overhead may indicate that the granularity may be too
  1463. low, and that bigger tasks may be appropriate to use the processing unit more
  1464. efficiently. The black sections indicate that the processing unit was blocked
  1465. because there was no task to process: this may indicate a lack of parallelism
  1466. which may be alleviated by creating more tasks when it is possible.
  1467. The second part of the @code{activity.eps} picture is a graph showing the
  1468. evolution of the number of tasks available in the system during the execution.
  1469. Ready tasks are shown in black, and tasks that are submitted but not
  1470. schedulable yet are shown in grey.
  1471. @node Codelet performance
  1472. @section Performance of codelets
  1473. The performance model of codelets can be examined by using the
  1474. @code{starpu_perfmodel_display} tool:
  1475. @example
  1476. $ starpu_perfmodel_display -l
  1477. file: <malloc_pinned.hannibal>
  1478. file: <starpu_slu_lu_model_21.hannibal>
  1479. file: <starpu_slu_lu_model_11.hannibal>
  1480. file: <starpu_slu_lu_model_22.hannibal>
  1481. file: <starpu_slu_lu_model_12.hannibal>
  1482. @end example
  1483. Here, the codelets of the lu example are available. We can examine the
  1484. performance of the 22 kernel:
  1485. @example
  1486. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1487. performance model for cpu
  1488. # hash size mean dev n
  1489. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1490. performance model for cuda_0
  1491. # hash size mean dev n
  1492. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1493. performance model for cuda_1
  1494. # hash size mean dev n
  1495. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1496. performance model for cuda_2
  1497. # hash size mean dev n
  1498. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1499. @end example
  1500. We can see that for the given size, over a sample of a few hundreds of
  1501. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1502. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1503. CPUs.
  1504. @c ---------------------------------------------------------------------
  1505. @c MPI support
  1506. @c ---------------------------------------------------------------------
  1507. @node StarPU MPI support
  1508. @chapter StarPU MPI support
  1509. The integration of MPI transfers within task parallelism is done in a
  1510. very natural way by the means of asynchronous interactions between the
  1511. application and StarPU. This is implemented in a separate libstarpumpi library
  1512. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1513. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1514. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.
  1515. @menu
  1516. * The API::
  1517. * Simple Example::
  1518. * MPI Insert Task Utility::
  1519. @end menu
  1520. @node The API
  1521. @section The API
  1522. @subsection Initialisation
  1523. @deftypefun int starpu_mpi_initialize (void)
  1524. Initialize the starpumpi library. This must be called between calling
  1525. @code{starpu_init} and other @code{starpu_mpi} functions. This replace calls to
  1526. MPI_Init.
  1527. @end deftypefun
  1528. @deftypefun int starpu_mpi_initialize_extended (int @var{initialize_mpi}, int *@var{rank}, int *@var{world_size})
  1529. Same as @code{starpu_mpi_initialize}, except that it returns the current MPI
  1530. node rank and world size.
  1531. @end deftypefun
  1532. @deftypefun int starpu_mpi_shutdown (void)
  1533. Cleans the starpumpi library. This must be called between calling
  1534. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1535. @end deftypefun
  1536. @subsection Communication
  1537. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1538. @end deftypefun
  1539. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1540. @end deftypefun
  1541. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1542. @end deftypefun
  1543. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1544. @end deftypefun
  1545. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1546. @end deftypefun
  1547. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1548. @end deftypefun
  1549. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1550. @end deftypefun
  1551. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1552. @end deftypefun
  1553. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1554. @end deftypefun
  1555. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1556. When the transfer is completed, the tag is unlocked
  1557. @end deftypefun
  1558. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1559. @end deftypefun
  1560. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1561. Asynchronously send an array of buffers, and unlocks the tag once all
  1562. of them are transmitted.
  1563. @end deftypefun
  1564. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1565. @end deftypefun
  1566. @page
  1567. @node Simple Example
  1568. @section Simple Example
  1569. @cartouche
  1570. @smallexample
  1571. void increment_token(void)
  1572. @{
  1573. struct starpu_task *task = starpu_task_create();
  1574. task->cl = &increment_cl;
  1575. task->buffers[0].handle = token_handle;
  1576. task->buffers[0].mode = STARPU_RW;
  1577. starpu_task_submit(task);
  1578. @}
  1579. @end smallexample
  1580. @end cartouche
  1581. @cartouche
  1582. @smallexample
  1583. int main(int argc, char **argv)
  1584. @{
  1585. int rank, size;
  1586. starpu_init(NULL);
  1587. starpu_mpi_initialize_extended(1, &rank, &size);
  1588. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1589. unsigned nloops = NITER;
  1590. unsigned loop;
  1591. unsigned last_loop = nloops - 1;
  1592. unsigned last_rank = size - 1;
  1593. @end smallexample
  1594. @end cartouche
  1595. @cartouche
  1596. @smallexample
  1597. for (loop = 0; loop < nloops; loop++) @{
  1598. int tag = loop*size + rank;
  1599. if (!((loop == 0) && (rank == 0)))
  1600. @{
  1601. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1602. MPI_COMM_WORLD, NULL, NULL);
  1603. @}
  1604. else @{
  1605. token = 0;
  1606. fprintf(stdout, "Start with token value %d\n", token);
  1607. @}
  1608. increment_token();
  1609. if (!((loop == last_loop) && (rank == last_rank)))
  1610. @{
  1611. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1612. MPI_COMM_WORLD, NULL, NULL);
  1613. @}
  1614. else @{
  1615. starpu_data_acquire(token_handle, STARPU_R);
  1616. fprintf(stdout, "Finished : token value %d\n", token);
  1617. starpu_data_release(token_handle);
  1618. @}
  1619. @}
  1620. starpu_task_wait_for_all();
  1621. @end smallexample
  1622. @end cartouche
  1623. @cartouche
  1624. @smallexample
  1625. starpu_mpi_shutdown();
  1626. starpu_shutdown();
  1627. if (rank == last_rank)
  1628. @{
  1629. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1630. STARPU_ASSERT(token == nloops*size);
  1631. @}
  1632. @end smallexample
  1633. @end cartouche
  1634. @page
  1635. @node MPI Insert Task Utility
  1636. @section MPI Insert Task Utility
  1637. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1638. Create and submit a task corresponding to @var{cl} with the following
  1639. arguments. The argument list must be zero-terminated.
  1640. The arguments following the codelets are the same types as for the
  1641. function @code{starpu_insert_task} defined in @ref{Insert Task
  1642. Utility}. The extra argument @code{STARPU_EXECUTE} followed by an
  1643. integer allows to specify the node to execute the codelet.
  1644. The algorithm is as follows:
  1645. @enumerate
  1646. @item Find out whether we are to execute the codelet because we own the
  1647. data to be written to. If different tasks own data to be written to,
  1648. the argument @code{STARPU_EXECUTE} should be used to specify the
  1649. executing task @code{ET}.
  1650. @item Send and receive data as requested. Tasks owning data which need
  1651. to be read by the executing task @code{ET} are sending them to @code{ET}.
  1652. @item Execute the codelet. This is done by the task selected in the
  1653. 1st step of the algorithm.
  1654. @item In the case when different tasks own data to be written to, send
  1655. W data back to their owners.
  1656. @end enumerate
  1657. The algorithm also includes a cache mechanism that allows not to send
  1658. data twice to the same task, unless the data has been modified.
  1659. @end deftypefun
  1660. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1661. @end deftypefun
  1662. @page
  1663. Here an example showing how to use @code{starpu_mpi_insert_task}. One
  1664. first needs to define a distribution function which specifies the
  1665. locality of the data. Note that that distribution information needs to
  1666. be given to StarPU by calling @code{starpu_data_set_rank}.
  1667. @cartouche
  1668. @smallexample
  1669. /* Returns the MPI node number where data is */
  1670. int my_distrib(int x, int y, int nb_nodes) @{
  1671. /* Cyclic distrib */
  1672. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  1673. // /* Linear distrib */
  1674. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  1675. @}
  1676. @end smallexample
  1677. @end cartouche
  1678. Now the data can be registered within StarPU. Data which are not
  1679. owned but will be needed for computations can be registered through
  1680. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  1681. StarPU will automatically allocate the memory when it is used for the
  1682. first time.
  1683. @cartouche
  1684. @smallexample
  1685. unsigned matrix[X][Y];
  1686. starpu_data_handle data_handles[X][Y];
  1687. for(x = 0; x < X; x++) @{
  1688. for (y = 0; y < Y; y++) @{
  1689. int mpi_rank = my_distrib(x, y, size);
  1690. if (mpi_rank == rank)
  1691. /* Owning data */
  1692. starpu_variable_data_register(&data_handles[x][y], 0,
  1693. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  1694. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  1695. /* I don't own that index, but will need it for my computations */
  1696. starpu_variable_data_register(&data_handles[x][y], -1,
  1697. (uintptr_t)NULL, sizeof(unsigned));
  1698. else
  1699. /* I know it's useless to allocate anything for this */
  1700. data_handles[x][y] = NULL;
  1701. if (data_handles[x][y])
  1702. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  1703. @}
  1704. @}
  1705. @end smallexample
  1706. @end cartouche
  1707. Now @code{starpu_mpi_insert_task()} can be called for the different
  1708. steps of the application.
  1709. @cartouche
  1710. @smallexample
  1711. for(loop=0 ; loop<niter; loop++)
  1712. for (x = 1; x < X-1; x++)
  1713. for (y = 1; y < Y-1; y++)
  1714. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  1715. STARPU_RW, data_handles[x][y],
  1716. STARPU_R, data_handles[x-1][y],
  1717. STARPU_R, data_handles[x+1][y],
  1718. STARPU_R, data_handles[x][y-1],
  1719. STARPU_R, data_handles[x][y+1],
  1720. 0);
  1721. starpu_task_wait_for_all();
  1722. @end smallexample
  1723. @end cartouche
  1724. @c ---------------------------------------------------------------------
  1725. @c Configuration options
  1726. @c ---------------------------------------------------------------------
  1727. @node Configuring StarPU
  1728. @chapter Configuring StarPU
  1729. @menu
  1730. * Compilation configuration::
  1731. * Execution configuration through environment variables::
  1732. @end menu
  1733. @node Compilation configuration
  1734. @section Compilation configuration
  1735. The following arguments can be given to the @code{configure} script.
  1736. @menu
  1737. * Common configuration::
  1738. * Configuring workers::
  1739. * Advanced configuration::
  1740. @end menu
  1741. @node Common configuration
  1742. @subsection Common configuration
  1743. @menu
  1744. * --enable-debug::
  1745. * --enable-fast::
  1746. * --enable-verbose::
  1747. * --enable-coverage::
  1748. @end menu
  1749. @node --enable-debug
  1750. @subsubsection @code{--enable-debug}
  1751. @table @asis
  1752. @item @emph{Description}:
  1753. Enable debugging messages.
  1754. @end table
  1755. @node --enable-fast
  1756. @subsubsection @code{--enable-fast}
  1757. @table @asis
  1758. @item @emph{Description}:
  1759. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1760. @end table
  1761. @node --enable-verbose
  1762. @subsubsection @code{--enable-verbose}
  1763. @table @asis
  1764. @item @emph{Description}:
  1765. Augment the verbosity of the debugging messages. This can be disabled
  1766. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1767. any value.
  1768. @smallexample
  1769. % STARPU_SILENT=1 ./vector_scal
  1770. @end smallexample
  1771. @end table
  1772. @node --enable-coverage
  1773. @subsubsection @code{--enable-coverage}
  1774. @table @asis
  1775. @item @emph{Description}:
  1776. Enable flags for the @code{gcov} coverage tool.
  1777. @end table
  1778. @node Configuring workers
  1779. @subsection Configuring workers
  1780. @menu
  1781. * --enable-nmaxcpus::
  1782. * --disable-cpu::
  1783. * --enable-maxcudadev::
  1784. * --disable-cuda::
  1785. * --with-cuda-dir::
  1786. * --with-cuda-include-dir::
  1787. * --with-cuda-lib-dir::
  1788. * --enable-maxopencldev::
  1789. * --disable-opencl::
  1790. * --with-opencl-dir::
  1791. * --with-opencl-include-dir::
  1792. * --with-opencl-lib-dir::
  1793. * --enable-gordon::
  1794. * --with-gordon-dir::
  1795. @end menu
  1796. @node --enable-nmaxcpus
  1797. @subsubsection @code{--enable-nmaxcpus=<number>}
  1798. @table @asis
  1799. @item @emph{Description}:
  1800. Defines the maximum number of CPU cores that StarPU will support, then
  1801. available as the @code{STARPU_NMAXCPUS} macro.
  1802. @end table
  1803. @node --disable-cpu
  1804. @subsubsection @code{--disable-cpu}
  1805. @table @asis
  1806. @item @emph{Description}:
  1807. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1808. @end table
  1809. @node --enable-maxcudadev
  1810. @subsubsection @code{--enable-maxcudadev=<number>}
  1811. @table @asis
  1812. @item @emph{Description}:
  1813. Defines the maximum number of CUDA devices that StarPU will support, then
  1814. available as the @code{STARPU_MAXCUDADEVS} macro.
  1815. @end table
  1816. @node --disable-cuda
  1817. @subsubsection @code{--disable-cuda}
  1818. @table @asis
  1819. @item @emph{Description}:
  1820. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1821. @end table
  1822. @node --with-cuda-dir
  1823. @subsubsection @code{--with-cuda-dir=<path>}
  1824. @table @asis
  1825. @item @emph{Description}:
  1826. Specify the directory where CUDA is installed. This directory should notably contain
  1827. @code{include/cuda.h}.
  1828. @end table
  1829. @node --with-cuda-include-dir
  1830. @subsubsection @code{--with-cuda-include-dir=<path>}
  1831. @table @asis
  1832. @item @emph{Description}:
  1833. Specify the directory where CUDA headers are installed. This directory should
  1834. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1835. value given to @code{--with-cuda-dir}.
  1836. @end table
  1837. @node --with-cuda-lib-dir
  1838. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1839. @table @asis
  1840. @item @emph{Description}:
  1841. Specify the directory where the CUDA library is installed. This directory should
  1842. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1843. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1844. @end table
  1845. @node --enable-maxopencldev
  1846. @subsubsection @code{--enable-maxopencldev=<number>}
  1847. @table @asis
  1848. @item @emph{Description}:
  1849. Defines the maximum number of OpenCL devices that StarPU will support, then
  1850. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1851. @end table
  1852. @node --disable-opencl
  1853. @subsubsection @code{--disable-opencl}
  1854. @table @asis
  1855. @item @emph{Description}:
  1856. Disable the use of OpenCL, even if the SDK is detected.
  1857. @end table
  1858. @node --with-opencl-dir
  1859. @subsubsection @code{--with-opencl-dir=<path>}
  1860. @table @asis
  1861. @item @emph{Description}:
  1862. Specify the location of the OpenCL SDK. This directory should notably contain
  1863. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1864. @end table
  1865. @node --with-opencl-include-dir
  1866. @subsubsection @code{--with-opencl-include-dir=<path>}
  1867. @table @asis
  1868. @item @emph{Description}:
  1869. Specify the location of OpenCL headers. This directory should notably contain
  1870. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1871. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1872. @end table
  1873. @node --with-opencl-lib-dir
  1874. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1875. @table @asis
  1876. @item @emph{Description}:
  1877. Specify the location of the OpenCL library. This directory should notably
  1878. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1879. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1880. @end table
  1881. @node --enable-gordon
  1882. @subsubsection @code{--enable-gordon}
  1883. @table @asis
  1884. @item @emph{Description}:
  1885. Enable the use of the Gordon runtime for Cell SPUs.
  1886. @c TODO: rather default to enabled when detected
  1887. @end table
  1888. @node --with-gordon-dir
  1889. @subsubsection @code{--with-gordon-dir=<path>}
  1890. @table @asis
  1891. @item @emph{Description}:
  1892. Specify the location of the Gordon SDK.
  1893. @end table
  1894. @node Advanced configuration
  1895. @subsection Advanced configuration
  1896. @menu
  1897. * --enable-perf-debug::
  1898. * --enable-model-debug::
  1899. * --enable-stats::
  1900. * --enable-maxbuffers::
  1901. * --enable-allocation-cache::
  1902. * --enable-opengl-render::
  1903. * --enable-blas-lib::
  1904. * --with-magma::
  1905. * --with-fxt::
  1906. * --with-perf-model-dir::
  1907. * --with-mpicc::
  1908. * --with-goto-dir::
  1909. * --with-atlas-dir::
  1910. * --with-mkl-cflags::
  1911. * --with-mkl-ldflags::
  1912. @end menu
  1913. @node --enable-perf-debug
  1914. @subsubsection @code{--enable-perf-debug}
  1915. @table @asis
  1916. @item @emph{Description}:
  1917. Enable performance debugging.
  1918. @end table
  1919. @node --enable-model-debug
  1920. @subsubsection @code{--enable-model-debug}
  1921. @table @asis
  1922. @item @emph{Description}:
  1923. Enable performance model debugging.
  1924. @end table
  1925. @node --enable-stats
  1926. @subsubsection @code{--enable-stats}
  1927. @table @asis
  1928. @item @emph{Description}:
  1929. Enable statistics.
  1930. @end table
  1931. @node --enable-maxbuffers
  1932. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1933. @table @asis
  1934. @item @emph{Description}:
  1935. Define the maximum number of buffers that tasks will be able to take
  1936. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1937. @end table
  1938. @node --enable-allocation-cache
  1939. @subsubsection @code{--enable-allocation-cache}
  1940. @table @asis
  1941. @item @emph{Description}:
  1942. Enable the use of a data allocation cache to avoid the cost of it with
  1943. CUDA. Still experimental.
  1944. @end table
  1945. @node --enable-opengl-render
  1946. @subsubsection @code{--enable-opengl-render}
  1947. @table @asis
  1948. @item @emph{Description}:
  1949. Enable the use of OpenGL for the rendering of some examples.
  1950. @c TODO: rather default to enabled when detected
  1951. @end table
  1952. @node --enable-blas-lib
  1953. @subsubsection @code{--enable-blas-lib=<name>}
  1954. @table @asis
  1955. @item @emph{Description}:
  1956. Specify the blas library to be used by some of the examples. The
  1957. library has to be 'atlas' or 'goto'.
  1958. @end table
  1959. @node --with-magma
  1960. @subsubsection @code{--with-magma=<path>}
  1961. @table @asis
  1962. @item @emph{Description}:
  1963. Specify where magma is installed. This directory should notably contain
  1964. @code{include/magmablas.h}.
  1965. @end table
  1966. @node --with-fxt
  1967. @subsubsection @code{--with-fxt=<path>}
  1968. @table @asis
  1969. @item @emph{Description}:
  1970. Specify the location of FxT (for generating traces and rendering them
  1971. using ViTE). This directory should notably contain
  1972. @code{include/fxt/fxt.h}.
  1973. @c TODO add ref to other section
  1974. @end table
  1975. @node --with-perf-model-dir
  1976. @subsubsection @code{--with-perf-model-dir=<dir>}
  1977. @table @asis
  1978. @item @emph{Description}:
  1979. Specify where performance models should be stored (instead of defaulting to the
  1980. current user's home).
  1981. @end table
  1982. @node --with-mpicc
  1983. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1984. @table @asis
  1985. @item @emph{Description}:
  1986. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1987. @end table
  1988. @node --with-goto-dir
  1989. @subsubsection @code{--with-goto-dir=<dir>}
  1990. @table @asis
  1991. @item @emph{Description}:
  1992. Specify the location of GotoBLAS.
  1993. @end table
  1994. @node --with-atlas-dir
  1995. @subsubsection @code{--with-atlas-dir=<dir>}
  1996. @table @asis
  1997. @item @emph{Description}:
  1998. Specify the location of ATLAS. This directory should notably contain
  1999. @code{include/cblas.h}.
  2000. @end table
  2001. @node --with-mkl-cflags
  2002. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2003. @table @asis
  2004. @item @emph{Description}:
  2005. Specify the compilation flags for the MKL Library.
  2006. @end table
  2007. @node --with-mkl-ldflags
  2008. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2009. @table @asis
  2010. @item @emph{Description}:
  2011. Specify the linking flags for the MKL Library. Note that the
  2012. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2013. website provides a script to determine the linking flags.
  2014. @end table
  2015. @c ---------------------------------------------------------------------
  2016. @c Environment variables
  2017. @c ---------------------------------------------------------------------
  2018. @node Execution configuration through environment variables
  2019. @section Execution configuration through environment variables
  2020. @menu
  2021. * Workers:: Configuring workers
  2022. * Scheduling:: Configuring the Scheduling engine
  2023. * Misc:: Miscellaneous and debug
  2024. @end menu
  2025. Note: the values given in @code{starpu_conf} structure passed when
  2026. calling @code{starpu_init} will override the values of the environment
  2027. variables.
  2028. @node Workers
  2029. @subsection Configuring workers
  2030. @menu
  2031. * STARPU_NCPUS:: Number of CPU workers
  2032. * STARPU_NCUDA:: Number of CUDA workers
  2033. * STARPU_NOPENCL:: Number of OpenCL workers
  2034. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2035. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2036. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2037. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2038. @end menu
  2039. @node STARPU_NCPUS
  2040. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2041. @table @asis
  2042. @item @emph{Description}:
  2043. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2044. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2045. the accelerators.
  2046. @end table
  2047. @node STARPU_NCUDA
  2048. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2049. @table @asis
  2050. @item @emph{Description}:
  2051. Specify the number of CUDA devices that StarPU can use. If
  2052. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2053. possible to select which CUDA devices should be used by the means of the
  2054. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2055. create as many CUDA workers as there are CUDA devices.
  2056. @end table
  2057. @node STARPU_NOPENCL
  2058. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2059. @table @asis
  2060. @item @emph{Description}:
  2061. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2062. @end table
  2063. @node STARPU_NGORDON
  2064. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2065. @table @asis
  2066. @item @emph{Description}:
  2067. Specify the number of SPUs that StarPU can use.
  2068. @end table
  2069. @node STARPU_WORKERS_CPUID
  2070. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2071. @table @asis
  2072. @item @emph{Description}:
  2073. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2074. specifies on which logical CPU the different workers should be
  2075. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2076. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2077. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2078. determined by the OS, or provided by the @code{hwloc} library in case it is
  2079. available.
  2080. Note that the first workers correspond to the CUDA workers, then come the
  2081. OpenCL and the SPU, and finally the CPU workers. For example if
  2082. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2083. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2084. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2085. the logical CPUs #1 and #3 will be used by the CPU workers.
  2086. If the number of workers is larger than the array given in
  2087. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2088. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2089. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2090. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2091. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2092. @end table
  2093. @node STARPU_WORKERS_CUDAID
  2094. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2095. @table @asis
  2096. @item @emph{Description}:
  2097. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2098. possible to select which CUDA devices should be used by StarPU. On a machine
  2099. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2100. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2101. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2102. the one reported by CUDA).
  2103. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2104. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2105. @end table
  2106. @node STARPU_WORKERS_OPENCLID
  2107. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2108. @table @asis
  2109. @item @emph{Description}:
  2110. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2111. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2112. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2113. @end table
  2114. @node Scheduling
  2115. @subsection Configuring the Scheduling engine
  2116. @menu
  2117. * STARPU_SCHED:: Scheduling policy
  2118. * STARPU_CALIBRATE:: Calibrate performance models
  2119. * STARPU_PREFETCH:: Use data prefetch
  2120. * STARPU_SCHED_ALPHA:: Computation factor
  2121. * STARPU_SCHED_BETA:: Communication factor
  2122. @end menu
  2123. @node STARPU_SCHED
  2124. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2125. @table @asis
  2126. @item @emph{Description}:
  2127. This chooses between the different scheduling policies proposed by StarPU: work
  2128. random, stealing, greedy, with performance models, etc.
  2129. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2130. @end table
  2131. @node STARPU_CALIBRATE
  2132. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2133. @table @asis
  2134. @item @emph{Description}:
  2135. If this variable is set to 1, the performance models are calibrated during
  2136. the execution. If it is set to 2, the previous values are dropped to restart
  2137. calibration from scratch. Setting this variable to 0 disable calibration, this
  2138. is the default behaviour.
  2139. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2140. @end table
  2141. @node STARPU_PREFETCH
  2142. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2143. @table @asis
  2144. @item @emph{Description}:
  2145. This variable indicates whether data prefetching should be enabled (0 means
  2146. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2147. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2148. advance, so that data is already present on the GPU when the task starts. As a
  2149. result, computation and data transfers are overlapped.
  2150. Note that prefetching is enabled by default in StarPU.
  2151. @end table
  2152. @node STARPU_SCHED_ALPHA
  2153. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2154. @table @asis
  2155. @item @emph{Description}:
  2156. To estimate the cost of a task StarPU takes into account the estimated
  2157. computation time (obtained thanks to performance models). The alpha factor is
  2158. the coefficient to be applied to it before adding it to the communication part.
  2159. @end table
  2160. @node STARPU_SCHED_BETA
  2161. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2162. @table @asis
  2163. @item @emph{Description}:
  2164. To estimate the cost of a task StarPU takes into account the estimated
  2165. data transfer time (obtained thanks to performance models). The beta factor is
  2166. the coefficient to be applied to it before adding it to the computation part.
  2167. @end table
  2168. @node Misc
  2169. @subsection Miscellaneous and debug
  2170. @menu
  2171. * STARPU_SILENT:: Disable verbose mode
  2172. * STARPU_LOGFILENAME:: Select debug file name
  2173. * STARPU_FXT_PREFIX:: FxT trace location
  2174. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2175. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2176. @end menu
  2177. @node STARPU_SILENT
  2178. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2179. @table @asis
  2180. @item @emph{Description}:
  2181. This variable allows to disable verbose mode at runtime when StarPU
  2182. has been configured with the option @code{--enable-verbose}.
  2183. @end table
  2184. @node STARPU_LOGFILENAME
  2185. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2186. @table @asis
  2187. @item @emph{Description}:
  2188. This variable specifies in which file the debugging output should be saved to.
  2189. @end table
  2190. @node STARPU_FXT_PREFIX
  2191. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2192. @table @asis
  2193. @item @emph{Description}
  2194. This variable specifies in which directory to save the trace generated if FxT is enabled.
  2195. @end table
  2196. @node STARPU_LIMIT_GPU_MEM
  2197. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2198. @table @asis
  2199. @item @emph{Description}
  2200. This variable specifies the maximum number of megabytes that should be
  2201. available to the application on each GPUs. In case this value is smaller than
  2202. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2203. on the device. This variable is intended to be used for experimental purposes
  2204. as it emulates devices that have a limited amount of memory.
  2205. @end table
  2206. @node STARPU_GENERATE_TRACE
  2207. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2208. @table @asis
  2209. @item @emph{Description}
  2210. When set to 1, this variable indicates that StarPU should automatically
  2211. generate a Paje trace when starpu_shutdown is called.
  2212. @end table
  2213. @c ---------------------------------------------------------------------
  2214. @c StarPU API
  2215. @c ---------------------------------------------------------------------
  2216. @node StarPU API
  2217. @chapter StarPU API
  2218. @menu
  2219. * Initialization and Termination:: Initialization and Termination methods
  2220. * Workers' Properties:: Methods to enumerate workers' properties
  2221. * Data Library:: Methods to manipulate data
  2222. * Data Interfaces::
  2223. * Data Partition::
  2224. * Codelets and Tasks:: Methods to construct tasks
  2225. * Explicit Dependencies:: Explicit Dependencies
  2226. * Implicit Data Dependencies:: Implicit Data Dependencies
  2227. * Performance Model API::
  2228. * Profiling API:: Profiling API
  2229. * CUDA extensions:: CUDA extensions
  2230. * OpenCL extensions:: OpenCL extensions
  2231. * Cell extensions:: Cell extensions
  2232. * Miscellaneous helpers::
  2233. @end menu
  2234. @node Initialization and Termination
  2235. @section Initialization and Termination
  2236. @menu
  2237. * starpu_init:: Initialize StarPU
  2238. * struct starpu_conf:: StarPU runtime configuration
  2239. * starpu_conf_init:: Initialize starpu_conf structure
  2240. * starpu_shutdown:: Terminate StarPU
  2241. @end menu
  2242. @node starpu_init
  2243. @subsection @code{starpu_init} -- Initialize StarPU
  2244. @table @asis
  2245. @item @emph{Description}:
  2246. This is StarPU initialization method, which must be called prior to any other
  2247. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2248. policy, number of cores, ...) by passing a non-null argument. Default
  2249. configuration is used if the passed argument is @code{NULL}.
  2250. @item @emph{Return value}:
  2251. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2252. indicates that no worker was available (so that StarPU was not initialized).
  2253. @item @emph{Prototype}:
  2254. @code{int starpu_init(struct starpu_conf *conf);}
  2255. @end table
  2256. @node struct starpu_conf
  2257. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2258. @table @asis
  2259. @item @emph{Description}:
  2260. This structure is passed to the @code{starpu_init} function in order
  2261. to configure StarPU.
  2262. When the default value is used, StarPU automatically selects the number
  2263. of processing units and takes the default scheduling policy. This parameter
  2264. overwrites the equivalent environment variables.
  2265. @item @emph{Fields}:
  2266. @table @asis
  2267. @item @code{sched_policy_name} (default = NULL):
  2268. This is the name of the scheduling policy. This can also be specified with the
  2269. @code{STARPU_SCHED} environment variable.
  2270. @item @code{sched_policy} (default = NULL):
  2271. This is the definition of the scheduling policy. This field is ignored
  2272. if @code{sched_policy_name} is set.
  2273. @item @code{ncpus} (default = -1):
  2274. This is the number of CPU cores that StarPU can use. This can also be
  2275. specified with the @code{STARPU_NCPUS} environment variable.
  2276. @item @code{ncuda} (default = -1):
  2277. This is the number of CUDA devices that StarPU can use. This can also be
  2278. specified with the @code{STARPU_NCUDA} environment variable.
  2279. @item @code{nopencl} (default = -1):
  2280. This is the number of OpenCL devices that StarPU can use. This can also be
  2281. specified with the @code{STARPU_NOPENCL} environment variable.
  2282. @item @code{nspus} (default = -1):
  2283. This is the number of Cell SPUs that StarPU can use. This can also be
  2284. specified with the @code{STARPU_NGORDON} environment variable.
  2285. @item @code{use_explicit_workers_bindid} (default = 0)
  2286. If this flag is set, the @code{workers_bindid} array indicates where the
  2287. different workers are bound, otherwise StarPU automatically selects where to
  2288. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2289. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2290. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2291. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2292. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2293. where to bind the different workers. The i-th entry of the
  2294. @code{workers_bindid} indicates the logical identifier of the processor which
  2295. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2296. either determined by the OS, or provided by the @code{hwloc} library in case it
  2297. is available.
  2298. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2299. ignored.
  2300. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2301. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2302. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2303. CUDA devices in a round-robin fashion.
  2304. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2305. ignored.
  2306. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2307. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2308. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2309. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2310. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2311. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2312. OpenCL devices in a round-robin fashion.
  2313. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2314. @item @code{calibrate} (default = 0):
  2315. If this flag is set, StarPU will calibrate the performance models when
  2316. executing tasks. If this value is equal to -1, the default value is used. The
  2317. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2318. variable when it is set.
  2319. @end table
  2320. @end table
  2321. @node starpu_conf_init
  2322. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2323. @table @asis
  2324. This function initializes the @code{starpu_conf} structure passed as argument
  2325. with the default values. In case some configuration parameters are already
  2326. specified through environment variables, @code{starpu_conf_init} initializes
  2327. the fields of the structure according to the environment variables. For
  2328. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2329. @code{.ncuda} field of the structure passed as argument.
  2330. @item @emph{Return value}:
  2331. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2332. indicates that the argument was NULL.
  2333. @item @emph{Prototype}:
  2334. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2335. @end table
  2336. @node starpu_shutdown
  2337. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2338. @deftypefun void starpu_shutdown (void)
  2339. This is StarPU termination method. It must be called at the end of the
  2340. application: statistics and other post-mortem debugging information are not
  2341. guaranteed to be available until this method has been called.
  2342. @end deftypefun
  2343. @node Workers' Properties
  2344. @section Workers' Properties
  2345. @menu
  2346. * starpu_worker_get_count:: Get the number of processing units
  2347. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2348. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2349. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2350. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2351. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2352. * starpu_worker_get_id:: Get the identifier of the current worker
  2353. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2354. * starpu_worker_get_devid:: Get the device identifier of a worker
  2355. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2356. * starpu_worker_get_name:: Get the name of a worker
  2357. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2358. @end menu
  2359. @node starpu_worker_get_count
  2360. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2361. @deftypefun unsigned starpu_worker_get_count (void)
  2362. This function returns the number of workers (i.e. processing units executing
  2363. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2364. @end deftypefun
  2365. @node starpu_worker_get_count_by_type
  2366. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2367. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2368. Returns the number of workers of the type indicated by the argument. A positive
  2369. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2370. the type is not valid otherwise.
  2371. @end deftypefun
  2372. @node starpu_cpu_worker_get_count
  2373. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2374. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2375. This function returns the number of CPUs controlled by StarPU. The returned
  2376. value should be at most @code{STARPU_NMAXCPUS}.
  2377. @end deftypefun
  2378. @node starpu_cuda_worker_get_count
  2379. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2380. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2381. This function returns the number of CUDA devices controlled by StarPU. The returned
  2382. value should be at most @code{STARPU_MAXCUDADEVS}.
  2383. @end deftypefun
  2384. @node starpu_opencl_worker_get_count
  2385. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2386. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2387. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2388. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2389. @end deftypefun
  2390. @node starpu_spu_worker_get_count
  2391. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2392. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2393. This function returns the number of Cell SPUs controlled by StarPU.
  2394. @end deftypefun
  2395. @node starpu_worker_get_id
  2396. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2397. @deftypefun int starpu_worker_get_id (void)
  2398. This function returns the identifier of the worker associated to the calling
  2399. thread. The returned value is either -1 if the current context is not a StarPU
  2400. worker (i.e. when called from the application outside a task or a callback), or
  2401. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2402. @end deftypefun
  2403. @node starpu_worker_get_ids_by_type
  2404. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2405. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2406. Fill the workerids array with the identifiers of the workers that have the type
  2407. indicated in the first argument. The maxsize argument indicates the size of the
  2408. workids array. The returned value gives the number of identifiers that were put
  2409. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2410. workers with the appropriate type: in that case, the array is filled with the
  2411. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2412. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2413. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2414. @end deftypefun
  2415. @node starpu_worker_get_devid
  2416. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2417. @deftypefun int starpu_worker_get_devid (int @var{id})
  2418. This functions returns the device id of the worker associated to an identifier
  2419. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2420. CUDA worker, this device identifier is the logical device identifier exposed by
  2421. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2422. identifier of a CPU worker is the logical identifier of the core on which the
  2423. worker was bound; this identifier is either provided by the OS or by the
  2424. @code{hwloc} library in case it is available.
  2425. @end deftypefun
  2426. @node starpu_worker_get_type
  2427. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2428. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2429. This function returns the type of worker associated to an identifier (as
  2430. returned by the @code{starpu_worker_get_id} function). The returned value
  2431. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2432. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2433. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2434. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2435. identifier is unspecified.
  2436. @end deftypefun
  2437. @node starpu_worker_get_name
  2438. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2439. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2440. StarPU associates a unique human readable string to each processing unit. This
  2441. function copies at most the @var{maxlen} first bytes of the unique string
  2442. associated to a worker identified by its identifier @var{id} into the
  2443. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2444. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2445. function on an invalid identifier results in an unspecified behaviour.
  2446. @end deftypefun
  2447. @node starpu_worker_get_memory_node
  2448. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2449. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2450. This function returns the identifier of the memory node associated to the
  2451. worker identified by @var{workerid}.
  2452. @end deftypefun
  2453. @node Data Library
  2454. @section Data Library
  2455. This section describes the data management facilities provided by StarPU.
  2456. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2457. design their own data interfaces if required.
  2458. @menu
  2459. * starpu_malloc:: Allocate data and pin it
  2460. * starpu_access_mode:: Data access mode
  2461. * unsigned memory_node:: Memory node
  2462. * starpu_data_handle:: StarPU opaque data handle
  2463. * void *interface:: StarPU data interface
  2464. * starpu_data_register:: Register a piece of data to StarPU
  2465. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2466. * starpu_data_invalidate:: Invalidate all data replicates
  2467. * starpu_data_acquire:: Access registered data from the application
  2468. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2469. * starpu_data_release:: Release registered data from the application
  2470. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2471. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2472. @end menu
  2473. @node starpu_malloc
  2474. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2475. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2476. This function allocates data of the given size. It will also try to pin it in
  2477. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2478. thus permit data transfer and computation overlapping. The allocated buffer must
  2479. be freed thanks to the @code{starpu_free} function.
  2480. @end deftypefun
  2481. @node starpu_access_mode
  2482. @subsection @code{starpu_access_mode} -- Data access mode
  2483. This datatype describes a data access mode. The different available modes are:
  2484. @table @asis
  2485. @table @asis
  2486. @item @code{STARPU_R} read-only mode.
  2487. @item @code{STARPU_W} write-only mode.
  2488. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2489. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2490. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2491. @end table
  2492. @end table
  2493. @node unsigned memory_node
  2494. @subsection @code{unsigned memory_node} -- Memory node
  2495. @table @asis
  2496. @item @emph{Description}:
  2497. Every worker is associated to a memory node which is a logical abstraction of
  2498. the address space from which the processing unit gets its data. For instance,
  2499. the memory node associated to the different CPU workers represents main memory
  2500. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2501. Every memory node is identified by a logical index which is accessible from the
  2502. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2503. to StarPU, the specified memory node indicates where the piece of data
  2504. initially resides (we also call this memory node the home node of a piece of
  2505. data).
  2506. @end table
  2507. @node starpu_data_handle
  2508. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2509. @table @asis
  2510. @item @emph{Description}:
  2511. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2512. data. Once a piece of data has been registered to StarPU, it is associated to a
  2513. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2514. over the entire machine, so that we can maintain data consistency and locate
  2515. data replicates for instance.
  2516. @end table
  2517. @node void *interface
  2518. @subsection @code{void *interface} -- StarPU data interface
  2519. @table @asis
  2520. @item @emph{Description}:
  2521. Data management is done at a high-level in StarPU: rather than accessing a mere
  2522. list of contiguous buffers, the tasks may manipulate data that are described by
  2523. a high-level construct which we call data interface.
  2524. An example of data interface is the "vector" interface which describes a
  2525. contiguous data array on a spefic memory node. This interface is a simple
  2526. structure containing the number of elements in the array, the size of the
  2527. elements, and the address of the array in the appropriate address space (this
  2528. address may be invalid if there is no valid copy of the array in the memory
  2529. node). More informations on the data interfaces provided by StarPU are
  2530. given in @ref{Data Interfaces}.
  2531. When a piece of data managed by StarPU is used by a task, the task
  2532. implementation is given a pointer to an interface describing a valid copy of
  2533. the data that is accessible from the current processing unit.
  2534. @end table
  2535. @node starpu_data_register
  2536. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2537. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2538. Register a piece of data into the handle located at the @var{handleptr}
  2539. address. The @var{interface} buffer contains the initial description of the
  2540. data in the home node. The @var{ops} argument is a pointer to a structure
  2541. describing the different methods used to manipulate this type of interface. See
  2542. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2543. If @code{home_node} is -1, StarPU will automatically
  2544. allocate the memory when it is used for the
  2545. first time in write-only mode. Once such data handle has been automatically
  2546. allocated, it is possible to access it using any access mode.
  2547. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2548. matrix) which can be registered by the means of helper functions (e.g.
  2549. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2550. @end deftypefun
  2551. @node starpu_data_unregister
  2552. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2553. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2554. This function unregisters a data handle from StarPU. If the data was
  2555. automatically allocated by StarPU because the home node was -1, all
  2556. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2557. is put back into the home node in the buffer that was initially registered.
  2558. Using a data handle that has been unregistered from StarPU results in an
  2559. undefined behaviour.
  2560. @end deftypefun
  2561. @node starpu_data_invalidate
  2562. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2563. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2564. Destroy all replicates of the data handle. After data invalidation, the first
  2565. access to the handle must be performed in write-only mode. Accessing an
  2566. invalidated data in read-mode results in undefined behaviour.
  2567. @end deftypefun
  2568. @c TODO create a specific sections about user interaction with the DSM ?
  2569. @node starpu_data_acquire
  2570. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2571. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  2572. The application must call this function prior to accessing registered data from
  2573. main memory outside tasks. StarPU ensures that the application will get an
  2574. up-to-date copy of the data in main memory located where the data was
  2575. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2576. be consistent with the access mode specified in the @var{mode} argument.
  2577. @code{starpu_data_release} must be called once the application does not need to
  2578. access the piece of data anymore. Note that implicit data
  2579. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2580. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2581. the data, unless that they have not been disabled explictly by calling
  2582. @code{starpu_data_set_default_sequential_consistency_flag} or
  2583. @code{starpu_data_set_sequential_consistency_flag}.
  2584. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2585. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2586. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2587. @end deftypefun
  2588. @node starpu_data_acquire_cb
  2589. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2590. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  2591. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2592. @code{starpu_data_release}. When the data specified in the first argument is
  2593. available in the appropriate access mode, the callback function is executed.
  2594. The application may access the requested data during the execution of this
  2595. callback. The callback function must call @code{starpu_data_release} once the
  2596. application does not need to access the piece of data anymore.
  2597. Note that implicit data dependencies are also enforced by
  2598. @code{starpu_data_acquire_cb} in case they are enabled.
  2599. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2600. be called from task callbacks. Upon successful completion, this function
  2601. returns 0.
  2602. @end deftypefun
  2603. @node starpu_data_release
  2604. @subsection @code{starpu_data_release} -- Release registered data from the application
  2605. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  2606. This function releases the piece of data acquired by the application either by
  2607. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2608. @end deftypefun
  2609. @node starpu_data_set_wt_mask
  2610. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2611. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  2612. This function sets the write-through mask of a given data, i.e. a bitmask of
  2613. nodes where the data should be always replicated after modification.
  2614. @end deftypefun
  2615. @node starpu_data_prefetch_on_node
  2616. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  2617. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  2618. Issue a prefetch request for a given data to a given node, i.e.
  2619. requests that the data be replicated to the given node, so that it is available
  2620. there for tasks. If the @var{async} parameter is 0, the call will block until
  2621. the transfer is achieved, else the call will return as soon as the request is
  2622. scheduled (which may however have to wait for a task completion).
  2623. @end deftypefun
  2624. @node Data Interfaces
  2625. @section Data Interfaces
  2626. @menu
  2627. * Variable Interface::
  2628. * Vector Interface::
  2629. * Matrix Interface::
  2630. * 3D Matrix Interface::
  2631. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2632. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2633. @end menu
  2634. @node Variable Interface
  2635. @subsection Variable Interface
  2636. @table @asis
  2637. @item @emph{Description}:
  2638. This variant of @code{starpu_data_register} uses the variable interface,
  2639. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2640. and @code{elemsize} is the size of the variable.
  2641. @item @emph{Prototype}:
  2642. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2643. uint32_t home_node,
  2644. uintptr_t ptr, size_t elemsize);}
  2645. @item @emph{Example}:
  2646. @cartouche
  2647. @smallexample
  2648. float var;
  2649. starpu_data_handle var_handle;
  2650. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2651. @end smallexample
  2652. @end cartouche
  2653. @end table
  2654. @node Vector Interface
  2655. @subsection Vector Interface
  2656. @table @asis
  2657. @item @emph{Description}:
  2658. This variant of @code{starpu_data_register} uses the vector interface,
  2659. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2660. element in the home node. @code{nx} is the number of elements in the vector.
  2661. @code{elemsize} is the size of each element.
  2662. @item @emph{Prototype}:
  2663. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2664. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2665. @item @emph{Example}:
  2666. @cartouche
  2667. @smallexample
  2668. float vector[NX];
  2669. starpu_data_handle vector_handle;
  2670. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2671. sizeof(vector[0]));
  2672. @end smallexample
  2673. @end cartouche
  2674. @end table
  2675. @node Matrix Interface
  2676. @subsection Matrix Interface
  2677. @table @asis
  2678. @item @emph{Description}:
  2679. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2680. matrices of elements. @code{ptr} is the address of the first element in the home
  2681. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2682. of elements in a row (this can be different from @code{ld} if there are extra
  2683. elements for alignment for instance). @code{ny} is the number of rows.
  2684. @code{elemsize} is the size of each element.
  2685. @item @emph{Prototype}:
  2686. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2687. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2688. uint32_t ny, size_t elemsize);}
  2689. @item @emph{Example}:
  2690. @cartouche
  2691. @smallexample
  2692. float *matrix;
  2693. starpu_data_handle matrix_handle;
  2694. matrix = (float*)malloc(width * height * sizeof(float));
  2695. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2696. width, width, height, sizeof(float));
  2697. @end smallexample
  2698. @end cartouche
  2699. @end table
  2700. @node 3D Matrix Interface
  2701. @subsection 3D Matrix Interface
  2702. @table @asis
  2703. @item @emph{Description}:
  2704. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2705. @code{ptr} is the address of the array of first element in the home node.
  2706. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2707. of rows between z planes. @code{nx} is the number of elements in a row (this
  2708. can be different from @code{ldy} if there are extra elements for alignment
  2709. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2710. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2711. each element.
  2712. @item @emph{Prototype}:
  2713. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2714. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2715. uint32_t ny, uint32_t nz, size_t elemsize);}
  2716. @item @emph{Example}:
  2717. @cartouche
  2718. @smallexample
  2719. float *block;
  2720. starpu_data_handle block_handle;
  2721. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2722. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2723. nx, nx*ny, nx, ny, nz, sizeof(float));
  2724. @end smallexample
  2725. @end cartouche
  2726. @end table
  2727. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2728. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2729. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  2730. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2731. TODO
  2732. @end deftypefun
  2733. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2734. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2735. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  2736. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2737. TODO
  2738. @end deftypefun
  2739. @node Data Partition
  2740. @section Data Partition
  2741. @menu
  2742. * struct starpu_data_filter:: StarPU filter structure
  2743. * starpu_data_partition:: Partition Data
  2744. * starpu_data_unpartition:: Unpartition Data
  2745. * starpu_data_get_nb_children::
  2746. * starpu_data_get_sub_data::
  2747. * Predefined filter functions::
  2748. @end menu
  2749. @node struct starpu_data_filter
  2750. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2751. @table @asis
  2752. @item @emph{Description}:
  2753. The filter structure describes a data partitioning operation, to be given to the
  2754. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2755. @item @emph{Fields}:
  2756. @table @asis
  2757. @item @code{filter_func}:
  2758. This function fills the @code{child_interface} structure with interface
  2759. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2760. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2761. @item @code{nchildren}:
  2762. This is the number of parts to partition the data into.
  2763. @item @code{get_nchildren}:
  2764. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2765. children depends on the actual data (e.g. the number of blocks in a sparse
  2766. matrix).
  2767. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2768. @item @code{get_child_ops}:
  2769. In case the resulting children use a different data interface, this function
  2770. returns which interface is used by child number @code{id}.
  2771. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2772. @item @code{filter_arg}:
  2773. Some filters take an addition parameter, but this is usually unused.
  2774. @item @code{filter_arg_ptr}:
  2775. Some filters take an additional array parameter like the sizes of the parts, but
  2776. this is usually unused.
  2777. @end table
  2778. @end table
  2779. @node starpu_data_partition
  2780. @subsection starpu_data_partition -- Partition Data
  2781. @table @asis
  2782. @item @emph{Description}:
  2783. This requests partitioning one StarPU data @code{initial_handle} into several
  2784. subdata according to the filter @code{f}
  2785. @item @emph{Prototype}:
  2786. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2787. @item @emph{Example}:
  2788. @cartouche
  2789. @smallexample
  2790. struct starpu_data_filter f = @{
  2791. .filter_func = starpu_vertical_block_filter_func,
  2792. .nchildren = nslicesx,
  2793. .get_nchildren = NULL,
  2794. .get_child_ops = NULL
  2795. @};
  2796. starpu_data_partition(A_handle, &f);
  2797. @end smallexample
  2798. @end cartouche
  2799. @end table
  2800. @node starpu_data_unpartition
  2801. @subsection starpu_data_unpartition -- Unpartition data
  2802. @table @asis
  2803. @item @emph{Description}:
  2804. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2805. collected back into one big piece in the @code{gathering_node} (usually 0).
  2806. @item @emph{Prototype}:
  2807. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2808. @item @emph{Example}:
  2809. @cartouche
  2810. @smallexample
  2811. starpu_data_unpartition(A_handle, 0);
  2812. @end smallexample
  2813. @end cartouche
  2814. @end table
  2815. @node starpu_data_get_nb_children
  2816. @subsection starpu_data_get_nb_children
  2817. @table @asis
  2818. @item @emph{Description}:
  2819. This function returns the number of children.
  2820. @item @emph{Return value}:
  2821. The number of children.
  2822. @item @emph{Prototype}:
  2823. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2824. @end table
  2825. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2826. @node starpu_data_get_sub_data
  2827. @subsection starpu_data_get_sub_data
  2828. @table @asis
  2829. @item @emph{Description}:
  2830. After partitioning a StarPU data by applying a filter,
  2831. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2832. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2833. is the number of filters to traverse (in case several filters have been applied,
  2834. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2835. parameters are the indexes.
  2836. @item @emph{Return value}:
  2837. A handle to the subdata.
  2838. @item @emph{Prototype}:
  2839. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2840. @item @emph{Example}:
  2841. @cartouche
  2842. @smallexample
  2843. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2844. @end smallexample
  2845. @end cartouche
  2846. @end table
  2847. @node Predefined filter functions
  2848. @subsection Predefined filter functions
  2849. @menu
  2850. * Partitioning BCSR Data::
  2851. * Partitioning BLAS interface::
  2852. * Partitioning Vector Data::
  2853. * Partitioning Block Data::
  2854. @end menu
  2855. This section gives a partial list of the predefined partitioning functions.
  2856. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2857. list can be found in @code{starpu_data_filters.h} .
  2858. @node Partitioning BCSR Data
  2859. @subsubsection Partitioning BCSR Data
  2860. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2861. TODO
  2862. @end deftypefun
  2863. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2864. TODO
  2865. @end deftypefun
  2866. @node Partitioning BLAS interface
  2867. @subsubsection Partitioning BLAS interface
  2868. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2869. This partitions a dense Matrix into horizontal blocks.
  2870. @end deftypefun
  2871. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2872. This partitions a dense Matrix into vertical blocks.
  2873. @end deftypefun
  2874. @node Partitioning Vector Data
  2875. @subsubsection Partitioning Vector Data
  2876. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2877. This partitions a vector into blocks of the same size.
  2878. @end deftypefun
  2879. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2880. This partitions a vector into blocks of sizes given in @var{filter_arg_ptr}.
  2881. @end deftypefun
  2882. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2883. This partitions a vector into two blocks, the first block size being given in @var{filter_arg}.
  2884. @end deftypefun
  2885. @node Partitioning Block Data
  2886. @subsubsection Partitioning Block Data
  2887. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2888. This partitions a 3D matrix along the X axis.
  2889. @end deftypefun
  2890. @node Codelets and Tasks
  2891. @section Codelets and Tasks
  2892. This section describes the interface to manipulate codelets and tasks.
  2893. @deftp {Data Type} {struct starpu_codelet}
  2894. The codelet structure describes a kernel that is possibly implemented on various
  2895. targets. For compatibility, make sure to initialize the whole structure to zero.
  2896. @table @asis
  2897. @item @code{where}
  2898. Indicates which types of processing units are able to execute the codelet.
  2899. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2900. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2901. indicates that it is only available on Cell SPUs.
  2902. @item @code{cpu_func} (optional)
  2903. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2904. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2905. argument being the array of data managed by the data management library, and
  2906. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2907. field of the @code{starpu_task} structure.
  2908. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2909. the @code{where} field, it must be non-null otherwise.
  2910. @item @code{cuda_func} (optional)
  2911. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2912. must be a host-function written in the CUDA runtime API}. Its prototype must
  2913. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2914. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2915. field, it must be non-null otherwise.
  2916. @item @code{opencl_func} (optional)
  2917. Is a function pointer to the OpenCL implementation of the codelet. Its
  2918. prototype must be:
  2919. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2920. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2921. @code{where} field, it must be non-null otherwise.
  2922. @item @code{gordon_func} (optional)
  2923. This is the index of the Cell SPU implementation within the Gordon library.
  2924. See Gordon documentation for more details on how to register a kernel and
  2925. retrieve its index.
  2926. @item @code{nbuffers}
  2927. Specifies the number of arguments taken by the codelet. These arguments are
  2928. managed by the DSM and are accessed from the @code{void *buffers[]}
  2929. array. The constant argument passed with the @code{cl_arg} field of the
  2930. @code{starpu_task} structure is not counted in this number. This value should
  2931. not be above @code{STARPU_NMAXBUFS}.
  2932. @item @code{model} (optional)
  2933. This is a pointer to the task duration performance model associated to this
  2934. codelet. This optional field is ignored when set to @code{NULL}.
  2935. TODO
  2936. @item @code{power_model} (optional)
  2937. This is a pointer to the task power consumption performance model associated
  2938. to this codelet. This optional field is ignored when set to @code{NULL}.
  2939. In the case of parallel codelets, this has to account for all processing units
  2940. involved in the parallel execution.
  2941. TODO
  2942. @end table
  2943. @end deftp
  2944. @deftp {Data Type} {struct starpu_task}
  2945. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2946. processing units managed by StarPU. It instantiates a codelet. It can either be
  2947. allocated dynamically with the @code{starpu_task_create} method, or declared
  2948. statically. In the latter case, the programmer has to zero the
  2949. @code{starpu_task} structure and to fill the different fields properly. The
  2950. indicated default values correspond to the configuration of a task allocated
  2951. with @code{starpu_task_create}.
  2952. @table @asis
  2953. @item @code{cl}
  2954. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2955. describes where the kernel should be executed, and supplies the appropriate
  2956. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2957. such empty tasks can be useful for synchronization purposes.
  2958. @item @code{buffers}
  2959. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2960. different pieces of data accessed by the task, and how they should be accessed.
  2961. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2962. @code{handle} field specifies the handle of the piece of data, and the
  2963. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2964. of entries in this array must be specified in the @code{nbuffers} field of the
  2965. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2966. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2967. option when configuring StarPU.
  2968. @item @code{cl_arg} (optional; default: @code{NULL})
  2969. This pointer is passed to the codelet through the second argument
  2970. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2971. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2972. argument.
  2973. @item @code{cl_arg_size} (optional, Cell-specific)
  2974. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2975. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2976. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2977. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2978. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2979. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2980. codelets, where the @code{cl_arg} pointer is given as such.
  2981. @item @code{callback_func} (optional) (default: @code{NULL})
  2982. This is a function pointer of prototype @code{void (*f)(void *)} which
  2983. specifies a possible callback. If this pointer is non-null, the callback
  2984. function is executed @emph{on the host} after the execution of the task. The
  2985. callback is passed the value contained in the @code{callback_arg} field. No
  2986. callback is executed if the field is set to @code{NULL}.
  2987. @item @code{callback_arg} (optional) (default: @code{NULL})
  2988. This is the pointer passed to the callback function. This field is ignored if
  2989. the @code{callback_func} is set to @code{NULL}.
  2990. @item @code{use_tag} (optional) (default: @code{0})
  2991. If set, this flag indicates that the task should be associated with the tag
  2992. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2993. with the task and to express task dependencies easily.
  2994. @item @code{tag_id}
  2995. This fields contains the tag associated to the task if the @code{use_tag} field
  2996. was set, it is ignored otherwise.
  2997. @item @code{synchronous}
  2998. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2999. returns only when the task has been executed (or if no worker is able to
  3000. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3001. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3002. This field indicates a level of priority for the task. This is an integer value
  3003. that must be set between the return values of the
  3004. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3005. and that of the @code{starpu_sched_get_max_priority} for the most important
  3006. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3007. are provided for convenience and respectively returns value of
  3008. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3009. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3010. order to allow static task initialization. Scheduling strategies that take
  3011. priorities into account can use this parameter to take better scheduling
  3012. decisions, but the scheduling policy may also ignore it.
  3013. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3014. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3015. task to the worker specified by the @code{workerid} field.
  3016. @item @code{workerid} (optional)
  3017. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3018. which is the identifier of the worker that should process this task (as
  3019. returned by @code{starpu_worker_get_id}). This field is ignored if
  3020. @code{execute_on_a_specific_worker} field is set to 0.
  3021. @item @code{detach} (optional) (default: @code{1})
  3022. If this flag is set, it is not possible to synchronize with the task
  3023. by the means of @code{starpu_task_wait} later on. Internal data structures
  3024. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3025. flag is not set.
  3026. @item @code{destroy} (optional) (default: @code{1})
  3027. If this flag is set, the task structure will automatically be freed, either
  3028. after the execution of the callback if the task is detached, or during
  3029. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3030. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3031. called explicitly. Setting this flag for a statically allocated task structure
  3032. will result in undefined behaviour.
  3033. @item @code{predicted} (output field)
  3034. Predicted duration of the task. This field is only set if the scheduling
  3035. strategy used performance models.
  3036. @end table
  3037. @end deftp
  3038. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3039. Initialize @var{task} with default values. This function is implicitly
  3040. called by @code{starpu_task_create}. By default, tasks initialized with
  3041. @code{starpu_task_init} must be deinitialized explicitly with
  3042. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3043. constant @code{STARPU_TASK_INITIALIZER}.
  3044. @end deftypefun
  3045. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3046. Allocate a task structure and initialize it with default values. Tasks
  3047. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3048. task is terminated. If the destroy flag is explicitly unset, the resources used
  3049. by the task are freed by calling
  3050. @code{starpu_task_destroy}.
  3051. @end deftypefun
  3052. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3053. Release all the structures automatically allocated to execute @var{task}. This is
  3054. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3055. freed. This should be used for statically allocated tasks for instance.
  3056. @end deftypefun
  3057. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3058. Free the resource allocated during @code{starpu_task_create} and
  3059. associated with @var{task}. This function can be called automatically
  3060. after the execution of a task by setting the @code{destroy} flag of the
  3061. @code{starpu_task} structure (default behaviour). Calling this function
  3062. on a statically allocated task results in an undefined behaviour.
  3063. @end deftypefun
  3064. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3065. This function blocks until @var{task} has been executed. It is not possible to
  3066. synchronize with a task more than once. It is not possible to wait for
  3067. synchronous or detached tasks.
  3068. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3069. indicates that the specified task was either synchronous or detached.
  3070. @end deftypefun
  3071. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3072. This function submits @var{task} to StarPU. Calling this function does
  3073. not mean that the task will be executed immediately as there can be data or task
  3074. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3075. scheduling this task with respect to such dependencies.
  3076. This function returns immediately if the @code{synchronous} field of the
  3077. @code{starpu_task} structure was set to 0, and block until the termination of
  3078. the task otherwise. It is also possible to synchronize the application with
  3079. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3080. function for instance.
  3081. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3082. means that there is no worker able to process this task (e.g. there is no GPU
  3083. available and this task is only implemented for CUDA devices).
  3084. @end deftypefun
  3085. @deftypefun int starpu_task_wait_for_all (void)
  3086. This function blocks until all the tasks that were submitted are terminated.
  3087. @end deftypefun
  3088. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3089. This function returns the task currently executed by the worker, or
  3090. NULL if it is called either from a thread that is not a task or simply
  3091. because there is no task being executed at the moment.
  3092. @end deftypefun
  3093. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3094. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3095. @end deftypefun
  3096. @c Callbacks : what can we put in callbacks ?
  3097. @node Explicit Dependencies
  3098. @section Explicit Dependencies
  3099. @menu
  3100. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3101. * starpu_tag_t:: Task logical identifier
  3102. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3103. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3104. * starpu_tag_wait:: Block until a Tag is terminated
  3105. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3106. * starpu_tag_remove:: Destroy a Tag
  3107. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3108. @end menu
  3109. @node starpu_task_declare_deps_array
  3110. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3111. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3112. Declare task dependencies between a @var{task} and an array of tasks of length
  3113. @var{ndeps}. This function must be called prior to the submission of the task,
  3114. but it may called after the submission or the execution of the tasks in the
  3115. array provided the tasks are still valid (ie. they were not automatically
  3116. destroyed). Calling this function on a task that was already submitted or with
  3117. an entry of @var{task_array} that is not a valid task anymore results in an
  3118. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3119. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3120. same task, in this case, the dependencies are added. It is possible to have
  3121. redundancy in the task dependencies.
  3122. @end deftypefun
  3123. @node starpu_tag_t
  3124. @subsection @code{starpu_tag_t} -- Task logical identifier
  3125. @table @asis
  3126. @item @emph{Description}:
  3127. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3128. dependencies between tasks by the means of those tags. To do so, fill the
  3129. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3130. be arbitrary) and set the @code{use_tag} field to 1.
  3131. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3132. not be started until the tasks which holds the declared dependency tags are
  3133. completed.
  3134. @end table
  3135. @node starpu_tag_declare_deps
  3136. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3137. @table @asis
  3138. @item @emph{Description}:
  3139. Specify the dependencies of the task identified by tag @code{id}. The first
  3140. argument specifies the tag which is configured, the second argument gives the
  3141. number of tag(s) on which @code{id} depends. The following arguments are the
  3142. tags which have to be terminated to unlock the task.
  3143. This function must be called before the associated task is submitted to StarPU
  3144. with @code{starpu_task_submit}.
  3145. @item @emph{Remark}
  3146. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3147. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3148. typically need to be explicitly casted. Using the
  3149. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3150. @item @emph{Prototype}:
  3151. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3152. @item @emph{Example}:
  3153. @cartouche
  3154. @example
  3155. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3156. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3157. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3158. @end example
  3159. @end cartouche
  3160. @end table
  3161. @node starpu_tag_declare_deps_array
  3162. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3163. @table @asis
  3164. @item @emph{Description}:
  3165. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3166. does not take a variable number of arguments but an array of tags of size
  3167. @code{ndeps}.
  3168. @item @emph{Prototype}:
  3169. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3170. @item @emph{Example}:
  3171. @cartouche
  3172. @example
  3173. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3174. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3175. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3176. @end example
  3177. @end cartouche
  3178. @end table
  3179. @node starpu_tag_wait
  3180. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3181. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3182. This function blocks until the task associated to tag @var{id} has been
  3183. executed. This is a blocking call which must therefore not be called within
  3184. tasks or callbacks, but only from the application directly. It is possible to
  3185. synchronize with the same tag multiple times, as long as the
  3186. @code{starpu_tag_remove} function is not called. Note that it is still
  3187. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3188. data structure was freed (e.g. if the @code{destroy} flag of the
  3189. @code{starpu_task} was enabled).
  3190. @end deftypefun
  3191. @node starpu_tag_wait_array
  3192. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3193. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3194. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3195. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3196. terminated.
  3197. @end deftypefun
  3198. @node starpu_tag_remove
  3199. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3200. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3201. This function releases the resources associated to tag @var{id}. It can be
  3202. called once the corresponding task has been executed and when there is
  3203. no other tag that depend on this tag anymore.
  3204. @end deftypefun
  3205. @node starpu_tag_notify_from_apps
  3206. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3207. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3208. This function explicitly unlocks tag @var{id}. It may be useful in the
  3209. case of applications which execute part of their computation outside StarPU
  3210. tasks (e.g. third-party libraries). It is also provided as a
  3211. convenient tool for the programmer, for instance to entirely construct the task
  3212. DAG before actually giving StarPU the opportunity to execute the tasks.
  3213. @end deftypefun
  3214. @node Implicit Data Dependencies
  3215. @section Implicit Data Dependencies
  3216. @menu
  3217. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3218. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3219. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3220. @end menu
  3221. In this section, we describe how StarPU makes it possible to insert implicit
  3222. task dependencies in order to enforce sequential data consistency. When this
  3223. data consistency is enabled on a specific data handle, any data access will
  3224. appear as sequentially consistent from the application. For instance, if the
  3225. application submits two tasks that access the same piece of data in read-only
  3226. mode, and then a third task that access it in write mode, dependencies will be
  3227. added between the two first tasks and the third one. Implicit data dependencies
  3228. are also inserted in the case of data accesses from the application.
  3229. @node starpu_data_set_default_sequential_consistency_flag
  3230. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3231. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3232. Set the default sequential consistency flag. If a non-zero value is passed, a
  3233. sequential data consistency will be enforced for all handles registered after
  3234. this function call, otherwise it is disabled. By default, StarPU enables
  3235. sequential data consistency. It is also possible to select the data consistency
  3236. mode of a specific data handle with the
  3237. @code{starpu_data_set_sequential_consistency_flag} function.
  3238. @end deftypefun
  3239. @node starpu_data_get_default_sequential_consistency_flag
  3240. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3241. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3242. This function returns the current default sequential consistency flag.
  3243. @end deftypefun
  3244. @node starpu_data_set_sequential_consistency_flag
  3245. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3246. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3247. Select the data consistency mode associated to a data handle. The consistency
  3248. mode set using this function has the priority over the default mode which can
  3249. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3250. @end deftypefun
  3251. @node Performance Model API
  3252. @section Performance Model API
  3253. @menu
  3254. * starpu_load_history_debug::
  3255. * starpu_perfmodel_debugfilepath::
  3256. * starpu_perfmodel_get_arch_name::
  3257. * starpu_force_bus_sampling::
  3258. @end menu
  3259. @node starpu_load_history_debug
  3260. @subsection @code{starpu_load_history_debug}
  3261. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3262. TODO
  3263. @end deftypefun
  3264. @node starpu_perfmodel_debugfilepath
  3265. @subsection @code{starpu_perfmodel_debugfilepath}
  3266. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3267. TODO
  3268. @end deftypefun
  3269. @node starpu_perfmodel_get_arch_name
  3270. @subsection @code{starpu_perfmodel_get_arch_name}
  3271. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3272. TODO
  3273. @end deftypefun
  3274. @node starpu_force_bus_sampling
  3275. @subsection @code{starpu_force_bus_sampling}
  3276. @deftypefun void starpu_force_bus_sampling (void)
  3277. This forces sampling the bus performance model again.
  3278. @end deftypefun
  3279. @node Profiling API
  3280. @section Profiling API
  3281. @menu
  3282. * starpu_profiling_status_set:: starpu_profiling_status_set
  3283. * starpu_profiling_status_get:: starpu_profiling_status_get
  3284. * struct starpu_task_profiling_info:: task profiling information
  3285. * struct starpu_worker_profiling_info:: worker profiling information
  3286. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3287. * struct starpu_bus_profiling_info:: bus profiling information
  3288. * starpu_bus_get_count::
  3289. * starpu_bus_get_id::
  3290. * starpu_bus_get_src::
  3291. * starpu_bus_get_dst::
  3292. * starpu_timing_timespec_delay_us::
  3293. * starpu_timing_timespec_to_us::
  3294. * starpu_bus_profiling_helper_display_summary::
  3295. * starpu_worker_profiling_helper_display_summary::
  3296. @end menu
  3297. @node starpu_profiling_status_set
  3298. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3299. @table @asis
  3300. @item @emph{Description}:
  3301. Thie function sets the profiling status. Profiling is activated by passing
  3302. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3303. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3304. resets all profiling measurements. When profiling is enabled, the
  3305. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3306. to a valid @code{struct starpu_task_profiling_info} structure containing
  3307. information about the execution of the task.
  3308. @item @emph{Return value}:
  3309. Negative return values indicate an error, otherwise the previous status is
  3310. returned.
  3311. @item @emph{Prototype}:
  3312. @code{int starpu_profiling_status_set(int status);}
  3313. @end table
  3314. @node starpu_profiling_status_get
  3315. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3316. @deftypefun int starpu_profiling_status_get (void)
  3317. Return the current profiling status or a negative value in case there was an error.
  3318. @end deftypefun
  3319. @node struct starpu_task_profiling_info
  3320. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3321. @table @asis
  3322. @item @emph{Description}:
  3323. This structure contains information about the execution of a task. It is
  3324. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3325. structure if profiling was enabled.
  3326. @item @emph{Fields}:
  3327. @table @asis
  3328. @item @code{submit_time}:
  3329. Date of task submission (relative to the initialization of StarPU).
  3330. @item @code{start_time}:
  3331. Date of task execution beginning (relative to the initialization of StarPU).
  3332. @item @code{end_time}:
  3333. Date of task execution termination (relative to the initialization of StarPU).
  3334. @item @code{workerid}:
  3335. Identifier of the worker which has executed the task.
  3336. @end table
  3337. @end table
  3338. @node struct starpu_worker_profiling_info
  3339. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3340. @table @asis
  3341. @item @emph{Description}:
  3342. This structure contains the profiling information associated to a worker.
  3343. @item @emph{Fields}:
  3344. @table @asis
  3345. @item @code{start_time}:
  3346. Starting date for the reported profiling measurements.
  3347. @item @code{total_time}:
  3348. Duration of the profiling measurement interval.
  3349. @item @code{executing_time}:
  3350. Time spent by the worker to execute tasks during the profiling measurement interval.
  3351. @item @code{sleeping_time}:
  3352. Time spent idling by the worker during the profiling measurement interval.
  3353. @item @code{executed_tasks}:
  3354. Number of tasks executed by the worker during the profiling measurement interval.
  3355. @end table
  3356. @end table
  3357. @node starpu_worker_get_profiling_info
  3358. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3359. @table @asis
  3360. @item @emph{Description}:
  3361. Get the profiling info associated to the worker identified by @code{workerid},
  3362. and reset the profiling measurements. If the @code{worker_info} argument is
  3363. NULL, only reset the counters associated to worker @code{workerid}.
  3364. @item @emph{Return value}:
  3365. Upon successful completion, this function returns 0. Otherwise, a negative
  3366. value is returned.
  3367. @item @emph{Prototype}:
  3368. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3369. @end table
  3370. @node struct starpu_bus_profiling_info
  3371. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3372. @table @asis
  3373. @item @emph{Description}:
  3374. TODO
  3375. @item @emph{Fields}:
  3376. @table @asis
  3377. @item @code{start_time}:
  3378. TODO
  3379. @item @code{total_time}:
  3380. TODO
  3381. @item @code{transferred_bytes}:
  3382. TODO
  3383. @item @code{transfer_count}:
  3384. TODO
  3385. @end table
  3386. @end table
  3387. @node starpu_bus_get_count
  3388. @subsection @code{starpu_bus_get_count}
  3389. @deftypefun int starpu_bus_get_count (void)
  3390. TODO
  3391. @end deftypefun
  3392. @node starpu_bus_get_id
  3393. @subsection @code{starpu_bus_get_id}
  3394. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3395. TODO
  3396. @end deftypefun
  3397. @node starpu_bus_get_src
  3398. @subsection @code{starpu_bus_get_src}
  3399. @deftypefun int starpu_bus_get_src (int @var{busid})
  3400. TODO
  3401. @end deftypefun
  3402. @node starpu_bus_get_dst
  3403. @subsection @code{starpu_bus_get_dst}
  3404. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3405. TODO
  3406. @end deftypefun
  3407. @node starpu_timing_timespec_delay_us
  3408. @subsection @code{starpu_timing_timespec_delay_us}
  3409. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3410. TODO
  3411. @end deftypefun
  3412. @node starpu_timing_timespec_to_us
  3413. @subsection @code{starpu_timing_timespec_to_us}
  3414. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3415. TODO
  3416. @end deftypefun
  3417. @node starpu_bus_profiling_helper_display_summary
  3418. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3419. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3420. TODO
  3421. @end deftypefun
  3422. @node starpu_worker_profiling_helper_display_summary
  3423. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3424. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3425. TODO
  3426. @end deftypefun
  3427. @node CUDA extensions
  3428. @section CUDA extensions
  3429. @c void starpu_malloc(float **A, size_t dim);
  3430. @menu
  3431. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3432. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3433. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3434. @end menu
  3435. @node starpu_cuda_get_local_stream
  3436. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3437. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3438. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3439. function is only provided for convenience so that programmers can easily use
  3440. asynchronous operations within codelets without having to create a stream by
  3441. hand. Note that the application is not forced to use the stream provided by
  3442. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3443. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3444. the likelihood of having all transfers overlapped.
  3445. @end deftypefun
  3446. @node starpu_helper_cublas_init
  3447. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3448. @deftypefun void starpu_helper_cublas_init (void)
  3449. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3450. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3451. controlled by StarPU. This call blocks until CUBLAS has been properly
  3452. initialized on every device.
  3453. @end deftypefun
  3454. @node starpu_helper_cublas_shutdown
  3455. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3456. @deftypefun void starpu_helper_cublas_shutdown (void)
  3457. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3458. @end deftypefun
  3459. @node OpenCL extensions
  3460. @section OpenCL extensions
  3461. @menu
  3462. * Enabling OpenCL:: Enabling OpenCL
  3463. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3464. * Loading OpenCL kernels:: Loading OpenCL kernels
  3465. * OpenCL statistics:: Collecting statistics from OpenCL
  3466. @end menu
  3467. @node Enabling OpenCL
  3468. @subsection Enabling OpenCL
  3469. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3470. enabled by default. To enable OpenCL, you need either to disable CUDA
  3471. when configuring StarPU:
  3472. @example
  3473. % ./configure --disable-cuda
  3474. @end example
  3475. or when running applications:
  3476. @example
  3477. % STARPU_NCUDA=0 ./application
  3478. @end example
  3479. OpenCL will automatically be started on any device not yet used by
  3480. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3481. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3482. so:
  3483. @example
  3484. % STARPU_NCUDA=2 ./application
  3485. @end example
  3486. @node Compiling OpenCL kernels
  3487. @subsection Compiling OpenCL kernels
  3488. Source codes for OpenCL kernels can be stored in a file or in a
  3489. string. StarPU provides functions to build the program executable for
  3490. each available OpenCL device as a @code{cl_program} object. This
  3491. program executable can then be loaded within a specific queue as
  3492. explained in the next section. These are only helpers, Applications
  3493. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3494. use (e.g. different programs on the different OpenCL devices, for
  3495. relocation purpose for instance).
  3496. @menu
  3497. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3498. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3499. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3500. @end menu
  3501. @node starpu_opencl_load_opencl_from_file
  3502. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3503. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3504. TODO
  3505. @end deftypefun
  3506. @node starpu_opencl_load_opencl_from_string
  3507. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3508. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3509. TODO
  3510. @end deftypefun
  3511. @node starpu_opencl_unload_opencl
  3512. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3513. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3514. TODO
  3515. @end deftypefun
  3516. @node Loading OpenCL kernels
  3517. @subsection Loading OpenCL kernels
  3518. @menu
  3519. * starpu_opencl_load_kernel:: Loading a kernel
  3520. * starpu_opencl_relase_kernel:: Releasing a kernel
  3521. @end menu
  3522. @node starpu_opencl_load_kernel
  3523. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3524. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3525. TODO
  3526. @end deftypefun
  3527. @node starpu_opencl_relase_kernel
  3528. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3529. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3530. TODO
  3531. @end deftypefun
  3532. @node OpenCL statistics
  3533. @subsection OpenCL statistics
  3534. @menu
  3535. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3536. @end menu
  3537. @node starpu_opencl_collect_stats
  3538. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3539. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3540. After termination of the kernels, the OpenCL codelet should call this function
  3541. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3542. collect statistics about the kernel execution (used cycles, consumed power).
  3543. @end deftypefun
  3544. @node Cell extensions
  3545. @section Cell extensions
  3546. nothing yet.
  3547. @node Miscellaneous helpers
  3548. @section Miscellaneous helpers
  3549. @menu
  3550. * starpu_data_cpy:: Copy a data handle into another data handle
  3551. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3552. @end menu
  3553. @node starpu_data_cpy
  3554. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3555. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3556. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3557. The @var{asynchronous} parameter indicates whether the function should
  3558. block or not. In the case of an asynchronous call, it is possible to
  3559. synchronize with the termination of this operation either by the means of
  3560. implicit dependencies (if enabled) or by calling
  3561. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3562. this callback function is executed after the handle has been copied, and it is
  3563. given the @var{callback_arg} pointer as argument.
  3564. @end deftypefun
  3565. @node starpu_execute_on_each_worker
  3566. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3567. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3568. When calling this method, the offloaded function specified by the first argument is
  3569. executed by every StarPU worker that may execute the function.
  3570. The second argument is passed to the offloaded function.
  3571. The last argument specifies on which types of processing units the function
  3572. should be executed. Similarly to the @var{where} field of the
  3573. @code{starpu_codelet} structure, it is possible to specify that the function
  3574. should be executed on every CUDA device and every CPU by passing
  3575. @code{STARPU_CPU|STARPU_CUDA}.
  3576. This function blocks until the function has been executed on every appropriate
  3577. processing units, so that it may not be called from a callback function for
  3578. instance.
  3579. @end deftypefun
  3580. @c ---------------------------------------------------------------------
  3581. @c Advanced Topics
  3582. @c ---------------------------------------------------------------------
  3583. @node Advanced Topics
  3584. @chapter Advanced Topics
  3585. @menu
  3586. * Defining a new data interface::
  3587. * Defining a new scheduling policy::
  3588. @end menu
  3589. @node Defining a new data interface
  3590. @section Defining a new data interface
  3591. @menu
  3592. * struct starpu_data_interface_ops_t:: Per-interface methods
  3593. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3594. * An example of data interface:: An example of data interface
  3595. @end menu
  3596. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3597. @node struct starpu_data_interface_ops_t
  3598. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3599. @table @asis
  3600. @item @emph{Description}:
  3601. TODO describe all the different fields
  3602. @end table
  3603. @node struct starpu_data_copy_methods
  3604. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3605. @table @asis
  3606. @item @emph{Description}:
  3607. TODO describe all the different fields
  3608. @end table
  3609. @node An example of data interface
  3610. @subsection An example of data interface
  3611. @table @asis
  3612. TODO
  3613. @end table
  3614. @node Defining a new scheduling policy
  3615. @section Defining a new scheduling policy
  3616. TODO
  3617. A full example showing how to define a new scheduling policy is available in
  3618. the StarPU sources in the directory @code{examples/scheduler/}.
  3619. @menu
  3620. * struct starpu_sched_policy_s::
  3621. * starpu_worker_set_sched_condition::
  3622. * starpu_sched_set_min_priority:: Set the minimum priority level
  3623. * starpu_sched_set_max_priority:: Set the maximum priority level
  3624. * starpu_push_local_task:: Assign a task to a worker
  3625. * Source code::
  3626. @end menu
  3627. @node struct starpu_sched_policy_s
  3628. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3629. @table @asis
  3630. @item @emph{Description}:
  3631. This structure contains all the methods that implement a scheduling policy. An
  3632. application may specify which scheduling strategy in the @code{sched_policy}
  3633. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3634. function.
  3635. @item @emph{Fields}:
  3636. @table @asis
  3637. @item @code{init_sched}:
  3638. Initialize the scheduling policy.
  3639. @item @code{deinit_sched}:
  3640. Cleanup the scheduling policy.
  3641. @item @code{push_task}:
  3642. Insert a task into the scheduler.
  3643. @item @code{push_prio_task}:
  3644. Insert a priority task into the scheduler.
  3645. @item @code{push_prio_notify}:
  3646. Notify the scheduler that a task was pushed on the worker. This method is
  3647. called when a task that was explicitely assigned to a worker is scheduled. This
  3648. method therefore permits to keep the state of of the scheduler coherent even
  3649. when StarPU bypasses the scheduling strategy.
  3650. @item @code{pop_task}:
  3651. Get a task from the scheduler. The mutex associated to the worker is already
  3652. taken when this method is called. If this method is defined as @code{NULL}, the
  3653. worker will only execute tasks from its local queue. In this case, the
  3654. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3655. assign tasks to the different workers.
  3656. @item @code{pop_every_task}:
  3657. Remove all available tasks from the scheduler (tasks are chained by the means
  3658. of the prev and next fields of the starpu_task structure). The mutex associated
  3659. to the worker is already taken when this method is called.
  3660. @item @code{post_exec_hook} (optionnal):
  3661. This method is called every time a task has been executed.
  3662. @item @code{policy_name}:
  3663. Name of the policy (optionnal).
  3664. @item @code{policy_description}:
  3665. Description of the policy (optionnal).
  3666. @end table
  3667. @end table
  3668. @node starpu_worker_set_sched_condition
  3669. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3670. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  3671. When there is no available task for a worker, StarPU blocks this worker on a
  3672. condition variable. This function specifies which condition variable (and the
  3673. associated mutex) should be used to block (and to wake up) a worker. Note that
  3674. multiple workers may use the same condition variable. For instance, in the case
  3675. of a scheduling strategy with a single task queue, the same condition variable
  3676. would be used to block and wake up all workers.
  3677. The initialization method of a scheduling strategy (@code{init_sched}) must
  3678. call this function once per worker.
  3679. @end deftypefun
  3680. @node starpu_sched_set_min_priority
  3681. @subsection @code{starpu_sched_set_min_priority}
  3682. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  3683. Defines the minimum priority level supported by the scheduling policy. The
  3684. default minimum priority level is the same as the default priority level which
  3685. is 0 by convention. The application may access that value by calling the
  3686. @code{starpu_sched_get_min_priority} function. This function should only be
  3687. called from the initialization method of the scheduling policy, and should not
  3688. be used directly from the application.
  3689. @end deftypefun
  3690. @node starpu_sched_set_max_priority
  3691. @subsection @code{starpu_sched_set_max_priority}
  3692. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  3693. Defines the maximum priority level supported by the scheduling policy. The
  3694. default maximum priority level is 1. The application may access that value by
  3695. calling the @code{starpu_sched_get_max_priority} function. This function should
  3696. only be called from the initialization method of the scheduling policy, and
  3697. should not be used directly from the application.
  3698. @end deftypefun
  3699. @node starpu_push_local_task
  3700. @subsection @code{starpu_push_local_task}
  3701. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3702. The scheduling policy may put tasks directly into a worker's local queue so
  3703. that it is not always necessary to create its own queue when the local queue
  3704. is sufficient. If "back" not null, the task is put at the back of the queue
  3705. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3706. a FIFO ordering.
  3707. @end deftypefun
  3708. @node Source code
  3709. @subsection Source code
  3710. @cartouche
  3711. @smallexample
  3712. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3713. .init_sched = init_dummy_sched,
  3714. .deinit_sched = deinit_dummy_sched,
  3715. .push_task = push_task_dummy,
  3716. .push_prio_task = NULL,
  3717. .pop_task = pop_task_dummy,
  3718. .post_exec_hook = NULL,
  3719. .pop_every_task = NULL,
  3720. .policy_name = "dummy",
  3721. .policy_description = "dummy scheduling strategy"
  3722. @};
  3723. @end smallexample
  3724. @end cartouche
  3725. @c ---------------------------------------------------------------------
  3726. @c Appendices
  3727. @c ---------------------------------------------------------------------
  3728. @c ---------------------------------------------------------------------
  3729. @c Full source code for the 'Scaling a Vector' example
  3730. @c ---------------------------------------------------------------------
  3731. @node Full source code for the 'Scaling a Vector' example
  3732. @appendix Full source code for the 'Scaling a Vector' example
  3733. @menu
  3734. * Main application::
  3735. * CPU Kernel::
  3736. * CUDA Kernel::
  3737. * OpenCL Kernel::
  3738. @end menu
  3739. @node Main application
  3740. @section Main application
  3741. @smallexample
  3742. @include vector_scal_c.texi
  3743. @end smallexample
  3744. @node CPU Kernel
  3745. @section CPU Kernel
  3746. @smallexample
  3747. @include vector_scal_cpu.texi
  3748. @end smallexample
  3749. @node CUDA Kernel
  3750. @section CUDA Kernel
  3751. @smallexample
  3752. @include vector_scal_cuda.texi
  3753. @end smallexample
  3754. @node OpenCL Kernel
  3755. @section OpenCL Kernel
  3756. @menu
  3757. * Invoking the kernel::
  3758. * Source of the kernel::
  3759. @end menu
  3760. @node Invoking the kernel
  3761. @subsection Invoking the kernel
  3762. @smallexample
  3763. @include vector_scal_opencl.texi
  3764. @end smallexample
  3765. @node Source of the kernel
  3766. @subsection Source of the kernel
  3767. @smallexample
  3768. @include vector_scal_opencl_codelet.texi
  3769. @end smallexample
  3770. @c
  3771. @c Indices.
  3772. @c
  3773. @node Function Index
  3774. @unnumbered Function Index
  3775. @printindex fn
  3776. @bye