| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500 | /* dtpttf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dtpttf_(char *transr, char *uplo, integer *n, doublereal 	*ap, doublereal *arf, integer *info){    /* System generated locals */    integer i__1, i__2, i__3;    /* Local variables */    integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp;    logical normaltransr;    extern logical _starpu_lsame_(char *, char *);    logical lower;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    logical nisodd;/*  -- LAPACK routine (version 3.2)                                    -- *//*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- *//*  -- November 2008                                                   -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*  Purpose *//*  ======= *//*  DTPTTF copies a triangular matrix A from standard packed format (TP) *//*  to rectangular full packed format (TF). *//*  Arguments *//*  ========= *//*  TRANSR   (input) CHARACTER *//*          = 'N':  ARF in Normal format is wanted; *//*          = 'T':  ARF in Conjugate-transpose format is wanted. *//*  UPLO    (input) CHARACTER *//*          = 'U':  A is upper triangular; *//*          = 'L':  A is lower triangular. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), *//*          On entry, the upper or lower triangular matrix A, packed *//*          columnwise in a linear array. The j-th column of A is stored *//*          in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *//*  ARF     (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), *//*          On exit, the upper or lower triangular matrix A stored in *//*          RFP format. For a further discussion see Notes below. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Notes *//*  ===== *//*  We first consider Rectangular Full Packed (RFP) Format when N is *//*  even. We give an example where N = 6. *//*      AP is Upper             AP is Lower *//*   00 01 02 03 04 05       00 *//*      11 12 13 14 15       10 11 *//*         22 23 24 25       20 21 22 *//*            33 34 35       30 31 32 33 *//*               44 45       40 41 42 43 44 *//*                  55       50 51 52 53 54 55 *//*  Let TRANSR = 'N'. RFP holds AP as follows: *//*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last *//*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of *//*  the transpose of the first three columns of AP upper. *//*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first *//*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of *//*  the transpose of the last three columns of AP lower. *//*  This covers the case N even and TRANSR = 'N'. *//*         RFP A                   RFP A *//*        03 04 05                33 43 53 *//*        13 14 15                00 44 54 *//*        23 24 25                10 11 55 *//*        33 34 35                20 21 22 *//*        00 44 45                30 31 32 *//*        01 11 55                40 41 42 *//*        02 12 22                50 51 52 *//*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the *//*  transpose of RFP A above. One therefore gets: *//*           RFP A                   RFP A *//*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 *//*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 *//*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 *//*  We first consider Rectangular Full Packed (RFP) Format when N is *//*  odd. We give an example where N = 5. *//*     AP is Upper                 AP is Lower *//*   00 01 02 03 04              00 *//*      11 12 13 14              10 11 *//*         22 23 24              20 21 22 *//*            33 34              30 31 32 33 *//*               44              40 41 42 43 44 *//*  Let TRANSR = 'N'. RFP holds AP as follows: *//*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last *//*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of *//*  the transpose of the first two columns of AP upper. *//*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first *//*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of *//*  the transpose of the last two columns of AP lower. *//*  This covers the case N odd and TRANSR = 'N'. *//*         RFP A                   RFP A *//*        02 03 04                00 33 43 *//*        12 13 14                10 11 44 *//*        22 23 24                20 21 22 *//*        00 33 34                30 31 32 *//*        01 11 44                40 41 42 *//*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the *//*  transpose of RFP A above. One therefore gets: *//*           RFP A                   RFP A *//*     02 12 22 00 01             00 10 20 30 40 50 *//*     03 13 23 33 11             33 11 21 31 41 51 *//*     04 14 24 34 44             43 44 22 32 42 52 *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    *info = 0;    normaltransr = _starpu_lsame_(transr, "N");    lower = _starpu_lsame_(uplo, "L");    if (! normaltransr && ! _starpu_lsame_(transr, "T")) {	*info = -1;    } else if (! lower && ! _starpu_lsame_(uplo, "U")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTPTTF", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (normaltransr) {	    arf[0] = ap[0];	} else {	    arf[0] = ap[0];	}	return 0;    }/*     Size of array ARF(0:NT-1) */    nt = *n * (*n + 1) / 2;/*     Set N1 and N2 depending on LOWER */    if (lower) {	n2 = *n / 2;	n1 = *n - n2;    } else {	n1 = *n / 2;	n2 = *n - n1;    }/*     If N is odd, set NISODD = .TRUE. *//*     If N is even, set K = N/2 and NISODD = .FALSE. *//*     set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) *//*     where noe = 0 if n is even, noe = 1 if n is odd */    if (*n % 2 == 0) {	k = *n / 2;	nisodd = FALSE_;	lda = *n + 1;    } else {	nisodd = TRUE_;	lda = *n;    }/*     ARF^C has lda rows and n+1-noe cols */    if (! normaltransr) {	lda = (*n + 1) / 2;    }/*     start execution: there are eight cases */    if (nisodd) {/*        N is odd */	if (normaltransr) {/*           N is odd and TRANSR = 'N' */	    if (lower) {/*              N is odd, TRANSR = 'N', and UPLO = 'L' */		ijp = 0;		jp = 0;		i__1 = n2;		for (j = 0; j <= i__1; ++j) {		    i__2 = *n - 1;		    for (i__ = j; i__ <= i__2; ++i__) {			ij = i__ + jp;			arf[ij] = ap[ijp];			++ijp;		    }		    jp += lda;		}		i__1 = n2 - 1;		for (i__ = 0; i__ <= i__1; ++i__) {		    i__2 = n2;		    for (j = i__ + 1; j <= i__2; ++j) {			ij = i__ + j * lda;			arf[ij] = ap[ijp];			++ijp;		    }		}	    } else {/*              N is odd, TRANSR = 'N', and UPLO = 'U' */		ijp = 0;		i__1 = n1 - 1;		for (j = 0; j <= i__1; ++j) {		    ij = n2 + j;		    i__2 = j;		    for (i__ = 0; i__ <= i__2; ++i__) {			arf[ij] = ap[ijp];			++ijp;			ij += lda;		    }		}		js = 0;		i__1 = *n - 1;		for (j = n1; j <= i__1; ++j) {		    ij = js;		    i__2 = js + j;		    for (ij = js; ij <= i__2; ++ij) {			arf[ij] = ap[ijp];			++ijp;		    }		    js += lda;		}	    }	} else {/*           N is odd and TRANSR = 'T' */	    if (lower) {/*              N is odd, TRANSR = 'T', and UPLO = 'L' */		ijp = 0;		i__1 = n2;		for (i__ = 0; i__ <= i__1; ++i__) {		    i__2 = *n * lda - 1;		    i__3 = lda;		    for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <= 			    i__2; ij += i__3) {			arf[ij] = ap[ijp];			++ijp;		    }		}		js = 1;		i__1 = n2 - 1;		for (j = 0; j <= i__1; ++j) {		    i__3 = js + n2 - j - 1;		    for (ij = js; ij <= i__3; ++ij) {			arf[ij] = ap[ijp];			++ijp;		    }		    js = js + lda + 1;		}	    } else {/*              N is odd, TRANSR = 'T', and UPLO = 'U' */		ijp = 0;		js = n2 * lda;		i__1 = n1 - 1;		for (j = 0; j <= i__1; ++j) {		    i__3 = js + j;		    for (ij = js; ij <= i__3; ++ij) {			arf[ij] = ap[ijp];			++ijp;		    }		    js += lda;		}		i__1 = n1;		for (i__ = 0; i__ <= i__1; ++i__) {		    i__3 = i__ + (n1 + i__) * lda;		    i__2 = lda;		    for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij += 			    i__2) {			arf[ij] = ap[ijp];			++ijp;		    }		}	    }	}    } else {/*        N is even */	if (normaltransr) {/*           N is even and TRANSR = 'N' */	    if (lower) {/*              N is even, TRANSR = 'N', and UPLO = 'L' */		ijp = 0;		jp = 0;		i__1 = k - 1;		for (j = 0; j <= i__1; ++j) {		    i__2 = *n - 1;		    for (i__ = j; i__ <= i__2; ++i__) {			ij = i__ + 1 + jp;			arf[ij] = ap[ijp];			++ijp;		    }		    jp += lda;		}		i__1 = k - 1;		for (i__ = 0; i__ <= i__1; ++i__) {		    i__2 = k - 1;		    for (j = i__; j <= i__2; ++j) {			ij = i__ + j * lda;			arf[ij] = ap[ijp];			++ijp;		    }		}	    } else {/*              N is even, TRANSR = 'N', and UPLO = 'U' */		ijp = 0;		i__1 = k - 1;		for (j = 0; j <= i__1; ++j) {		    ij = k + 1 + j;		    i__2 = j;		    for (i__ = 0; i__ <= i__2; ++i__) {			arf[ij] = ap[ijp];			++ijp;			ij += lda;		    }		}		js = 0;		i__1 = *n - 1;		for (j = k; j <= i__1; ++j) {		    ij = js;		    i__2 = js + j;		    for (ij = js; ij <= i__2; ++ij) {			arf[ij] = ap[ijp];			++ijp;		    }		    js += lda;		}	    }	} else {/*           N is even and TRANSR = 'T' */	    if (lower) {/*              N is even, TRANSR = 'T', and UPLO = 'L' */		ijp = 0;		i__1 = k - 1;		for (i__ = 0; i__ <= i__1; ++i__) {		    i__2 = (*n + 1) * lda - 1;		    i__3 = lda;		    for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 : 			    ij <= i__2; ij += i__3) {			arf[ij] = ap[ijp];			++ijp;		    }		}		js = 0;		i__1 = k - 1;		for (j = 0; j <= i__1; ++j) {		    i__3 = js + k - j - 1;		    for (ij = js; ij <= i__3; ++ij) {			arf[ij] = ap[ijp];			++ijp;		    }		    js = js + lda + 1;		}	    } else {/*              N is even, TRANSR = 'T', and UPLO = 'U' */		ijp = 0;		js = (k + 1) * lda;		i__1 = k - 1;		for (j = 0; j <= i__1; ++j) {		    i__3 = js + j;		    for (ij = js; ij <= i__3; ++ij) {			arf[ij] = ap[ijp];			++ijp;		    }		    js += lda;		}		i__1 = k - 1;		for (i__ = 0; i__ <= i__1; ++i__) {		    i__3 = i__ + (k + i__) * lda;		    i__2 = lda;		    for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij += 			    i__2) {			arf[ij] = ap[ijp];			++ijp;		    }		}	    }	}    }    return 0;/*     End of DTPTTF */} /* _starpu_dtpttf_ */
 |