| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693 | /* dtgsyl.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__2 = 2;static integer c_n1 = -1;static integer c__5 = 5;static doublereal c_b14 = 0.;static integer c__1 = 1;static doublereal c_b51 = -1.;static doublereal c_b52 = 1.;/* Subroutine */ int _starpu_dtgsyl_(char *trans, integer *ijob, integer *m, integer *	n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 	doublereal *c__, integer *ldc, doublereal *d__, integer *ldd, 	doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *	scale, doublereal *dif, doublereal *work, integer *lwork, integer *	iwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, 	    d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3, 	    i__4;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, k, p, q, ie, je, mb, nb, is, js, pq;    doublereal dsum;    integer ppqq;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *), _starpu_dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    extern logical _starpu_lsame_(char *, char *);    integer ifunc, linfo, lwmin;    doublereal scale2;    extern /* Subroutine */ int _starpu_dtgsy2_(char *, integer *, integer *, integer 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *, integer *);    doublereal dscale, scaloc;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    integer iround;    logical notran;    integer isolve;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTGSYL solves the generalized Sylvester equation: *//*              A * R - L * B = scale * C                 (1) *//*              D * R - L * E = scale * F *//*  where R and L are unknown m-by-n matrices, (A, D), (B, E) and *//*  (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, *//*  respectively, with real entries. (A, D) and (B, E) must be in *//*  generalized (real) Schur canonical form, i.e. A, B are upper quasi *//*  triangular and D, E are upper triangular. *//*  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output *//*  scaling factor chosen to avoid overflow. *//*  In matrix notation (1) is equivalent to solve  Zx = scale b, where *//*  Z is defined as *//*             Z = [ kron(In, A)  -kron(B', Im) ]         (2) *//*                 [ kron(In, D)  -kron(E', Im) ]. *//*  Here Ik is the identity matrix of size k and X' is the transpose of *//*  X. kron(X, Y) is the Kronecker product between the matrices X and Y. *//*  If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b, *//*  which is equivalent to solve for R and L in *//*              A' * R  + D' * L   = scale *  C           (3) *//*              R  * B' + L  * E'  = scale * (-F) *//*  This case (TRANS = 'T') is used to compute an one-norm-based estimate *//*  of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) *//*  and (B,E), using DLACON. *//*  If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate *//*  of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the *//*  reciprocal of the smallest singular value of Z. See [1-2] for more *//*  information. *//*  This is a level 3 BLAS algorithm. *//*  Arguments *//*  ========= *//*  TRANS   (input) CHARACTER*1 *//*          = 'N', solve the generalized Sylvester equation (1). *//*          = 'T', solve the 'transposed' system (3). *//*  IJOB    (input) INTEGER *//*          Specifies what kind of functionality to be performed. *//*           =0: solve (1) only. *//*           =1: The functionality of 0 and 3. *//*           =2: The functionality of 0 and 4. *//*           =3: Only an estimate of Dif[(A,D), (B,E)] is computed. *//*               (look ahead strategy IJOB  = 1 is used). *//*           =4: Only an estimate of Dif[(A,D), (B,E)] is computed. *//*               ( DGECON on sub-systems is used ). *//*          Not referenced if TRANS = 'T'. *//*  M       (input) INTEGER *//*          The order of the matrices A and D, and the row dimension of *//*          the matrices C, F, R and L. *//*  N       (input) INTEGER *//*          The order of the matrices B and E, and the column dimension *//*          of the matrices C, F, R and L. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA, M) *//*          The upper quasi triangular matrix A. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1, M). *//*  B       (input) DOUBLE PRECISION array, dimension (LDB, N) *//*          The upper quasi triangular matrix B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1, N). *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC, N) *//*          On entry, C contains the right-hand-side of the first matrix *//*          equation in (1) or (3). *//*          On exit, if IJOB = 0, 1 or 2, C has been overwritten by *//*          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, *//*          the solution achieved during the computation of the *//*          Dif-estimate. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. LDC >= max(1, M). *//*  D       (input) DOUBLE PRECISION array, dimension (LDD, M) *//*          The upper triangular matrix D. *//*  LDD     (input) INTEGER *//*          The leading dimension of the array D. LDD >= max(1, M). *//*  E       (input) DOUBLE PRECISION array, dimension (LDE, N) *//*          The upper triangular matrix E. *//*  LDE     (input) INTEGER *//*          The leading dimension of the array E. LDE >= max(1, N). *//*  F       (input/output) DOUBLE PRECISION array, dimension (LDF, N) *//*          On entry, F contains the right-hand-side of the second matrix *//*          equation in (1) or (3). *//*          On exit, if IJOB = 0, 1 or 2, F has been overwritten by *//*          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, *//*          the solution achieved during the computation of the *//*          Dif-estimate. *//*  LDF     (input) INTEGER *//*          The leading dimension of the array F. LDF >= max(1, M). *//*  DIF     (output) DOUBLE PRECISION *//*          On exit DIF is the reciprocal of a lower bound of the *//*          reciprocal of the Dif-function, i.e. DIF is an upper bound of *//*          Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). *//*          IF IJOB = 0 or TRANS = 'T', DIF is not touched. *//*  SCALE   (output) DOUBLE PRECISION *//*          On exit SCALE is the scaling factor in (1) or (3). *//*          If 0 < SCALE < 1, C and F hold the solutions R and L, resp., *//*          to a slightly perturbed system but the input matrices A, B, D *//*          and E have not been changed. If SCALE = 0, C and F hold the *//*          solutions R and L, respectively, to the homogeneous system *//*          with C = F = 0. Normally, SCALE = 1. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK > = 1. *//*          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace) INTEGER array, dimension (M+N+6) *//*  INFO    (output) INTEGER *//*            =0: successful exit *//*            <0: If INFO = -i, the i-th argument had an illegal value. *//*            >0: (A, D) and (B, E) have common or close eigenvalues. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, *//*     Umea University, S-901 87 Umea, Sweden. *//*  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software *//*      for Solving the Generalized Sylvester Equation and Estimating the *//*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, *//*      Department of Computing Science, Umea University, S-901 87 Umea, *//*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working *//*      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22, *//*      No 1, 1996. *//*  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester *//*      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. *//*      Appl., 15(4):1045-1060, 1994 *//*  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with *//*      Condition Estimators for Solving the Generalized Sylvester *//*      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, *//*      July 1989, pp 745-751. *//*  ===================================================================== *//*  Replaced various illegal calls to DCOPY by calls to DLASET. *//*  Sven Hammarling, 1/5/02. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    d_dim1 = *ldd;    d_offset = 1 + d_dim1;    d__ -= d_offset;    e_dim1 = *lde;    e_offset = 1 + e_dim1;    e -= e_offset;    f_dim1 = *ldf;    f_offset = 1 + f_dim1;    f -= f_offset;    --work;    --iwork;    /* Function Body */    *info = 0;    notran = _starpu_lsame_(trans, "N");    lquery = *lwork == -1;    if (! notran && ! _starpu_lsame_(trans, "T")) {	*info = -1;    } else if (notran) {	if (*ijob < 0 || *ijob > 4) {	    *info = -2;	}    }    if (*info == 0) {	if (*m <= 0) {	    *info = -3;	} else if (*n <= 0) {	    *info = -4;	} else if (*lda < max(1,*m)) {	    *info = -6;	} else if (*ldb < max(1,*n)) {	    *info = -8;	} else if (*ldc < max(1,*m)) {	    *info = -10;	} else if (*ldd < max(1,*m)) {	    *info = -12;	} else if (*lde < max(1,*n)) {	    *info = -14;	} else if (*ldf < max(1,*m)) {	    *info = -16;	}    }    if (*info == 0) {	if (notran) {	    if (*ijob == 1 || *ijob == 2) {/* Computing MAX */		i__1 = 1, i__2 = (*m << 1) * *n;		lwmin = max(i__1,i__2);	    } else {		lwmin = 1;	    }	} else {	    lwmin = 1;	}	work[1] = (doublereal) lwmin;	if (*lwork < lwmin && ! lquery) {	    *info = -20;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTGSYL", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*m == 0 || *n == 0) {	*scale = 1.;	if (notran) {	    if (*ijob != 0) {		*dif = 0.;	    }	}	return 0;    }/*     Determine optimal block sizes MB and NB */    mb = _starpu_ilaenv_(&c__2, "DTGSYL", trans, m, n, &c_n1, &c_n1);    nb = _starpu_ilaenv_(&c__5, "DTGSYL", trans, m, n, &c_n1, &c_n1);    isolve = 1;    ifunc = 0;    if (notran) {	if (*ijob >= 3) {	    ifunc = *ijob - 2;	    _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc)		    ;	    _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);	} else if (*ijob >= 1) {	    isolve = 2;	}    }    if (mb <= 1 && nb <= 1 || mb >= *m && nb >= *n) {	i__1 = isolve;	for (iround = 1; iround <= i__1; ++iround) {/*           Use unblocked Level 2 solver */	    dscale = 0.;	    dsum = 1.;	    pq = 0;	    _starpu_dtgsy2_(trans, &ifunc, m, n, &a[a_offset], lda, &b[b_offset], ldb, 		     &c__[c_offset], ldc, &d__[d_offset], ldd, &e[e_offset], 		    lde, &f[f_offset], ldf, scale, &dsum, &dscale, &iwork[1], 		    &pq, info);	    if (dscale != 0.) {		if (*ijob == 1 || *ijob == 3) {		    *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale * 			    sqrt(dsum));		} else {		    *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));		}	    }	    if (isolve == 2 && iround == 1) {		if (notran) {		    ifunc = *ijob;		}		scale2 = *scale;		_starpu_dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);		_starpu_dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);		_starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);		_starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);	    } else if (isolve == 2 && iround == 2) {		_starpu_dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);		_starpu_dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);		*scale = scale2;	    }/* L30: */	}	return 0;    }/*     Determine block structure of A */    p = 0;    i__ = 1;L40:    if (i__ > *m) {	goto L50;    }    ++p;    iwork[p] = i__;    i__ += mb;    if (i__ >= *m) {	goto L50;    }    if (a[i__ + (i__ - 1) * a_dim1] != 0.) {	++i__;    }    goto L40;L50:    iwork[p + 1] = *m + 1;    if (iwork[p] == iwork[p + 1]) {	--p;    }/*     Determine block structure of B */    q = p + 1;    j = 1;L60:    if (j > *n) {	goto L70;    }    ++q;    iwork[q] = j;    j += nb;    if (j >= *n) {	goto L70;    }    if (b[j + (j - 1) * b_dim1] != 0.) {	++j;    }    goto L60;L70:    iwork[q + 1] = *n + 1;    if (iwork[q] == iwork[q + 1]) {	--q;    }    if (notran) {	i__1 = isolve;	for (iround = 1; iround <= i__1; ++iround) {/*           Solve (I, J)-subsystem *//*               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) *//*               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) *//*           for I = P, P - 1,..., 1; J = 1, 2,..., Q */	    dscale = 0.;	    dsum = 1.;	    pq = 0;	    *scale = 1.;	    i__2 = q;	    for (j = p + 2; j <= i__2; ++j) {		js = iwork[j];		je = iwork[j + 1] - 1;		nb = je - js + 1;		for (i__ = p; i__ >= 1; --i__) {		    is = iwork[i__];		    ie = iwork[i__ + 1] - 1;		    mb = ie - is + 1;		    ppqq = 0;		    _starpu_dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], 			    lda, &b[js + js * b_dim1], ldb, &c__[is + js * 			    c_dim1], ldc, &d__[is + is * d_dim1], ldd, &e[js 			    + js * e_dim1], lde, &f[is + js * f_dim1], ldf, &			    scaloc, &dsum, &dscale, &iwork[q + 2], &ppqq, &			    linfo);		    if (linfo > 0) {			*info = linfo;		    }		    pq += ppqq;		    if (scaloc != 1.) {			i__3 = js - 1;			for (k = 1; k <= i__3; ++k) {			    _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);			    _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L80: */			}			i__3 = je;			for (k = js; k <= i__3; ++k) {			    i__4 = is - 1;			    _starpu_dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &				    c__1);			    i__4 = is - 1;			    _starpu_dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L90: */			}			i__3 = je;			for (k = js; k <= i__3; ++k) {			    i__4 = *m - ie;			    _starpu_dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], 				    &c__1);			    i__4 = *m - ie;			    _starpu_dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &				    c__1);/* L100: */			}			i__3 = *n;			for (k = je + 1; k <= i__3; ++k) {			    _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);			    _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L110: */			}			*scale *= scaloc;		    }/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (i__ > 1) {			i__3 = is - 1;			_starpu_dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &a[is * 				a_dim1 + 1], lda, &c__[is + js * c_dim1], ldc, 				 &c_b52, &c__[js * c_dim1 + 1], ldc);			i__3 = is - 1;			_starpu_dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &d__[is * 				d_dim1 + 1], ldd, &c__[is + js * c_dim1], ldc, 				 &c_b52, &f[js * f_dim1 + 1], ldf);		    }		    if (j < q) {			i__3 = *n - je;			_starpu_dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *				 f_dim1], ldf, &b[js + (je + 1) * b_dim1], 				ldb, &c_b52, &c__[is + (je + 1) * c_dim1], 				ldc);			i__3 = *n - je;			_starpu_dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *				 f_dim1], ldf, &e[js + (je + 1) * e_dim1], 				lde, &c_b52, &f[is + (je + 1) * f_dim1], ldf);		    }/* L120: */		}/* L130: */	    }	    if (dscale != 0.) {		if (*ijob == 1 || *ijob == 3) {		    *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale * 			    sqrt(dsum));		} else {		    *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));		}	    }	    if (isolve == 2 && iround == 1) {		if (notran) {		    ifunc = *ijob;		}		scale2 = *scale;		_starpu_dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);		_starpu_dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);		_starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);		_starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);	    } else if (isolve == 2 && iround == 2) {		_starpu_dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);		_starpu_dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);		*scale = scale2;	    }/* L150: */	}    } else {/*        Solve transposed (I, J)-subsystem *//*             A(I, I)' * R(I, J)  + D(I, I)' * L(I, J)  =  C(I, J) *//*             R(I, J)  * B(J, J)' + L(I, J)  * E(J, J)' = -F(I, J) *//*        for I = 1,2,..., P; J = Q, Q-1,..., 1 */	*scale = 1.;	i__1 = p;	for (i__ = 1; i__ <= i__1; ++i__) {	    is = iwork[i__];	    ie = iwork[i__ + 1] - 1;	    mb = ie - is + 1;	    i__2 = p + 2;	    for (j = q; j >= i__2; --j) {		js = iwork[j];		je = iwork[j + 1] - 1;		nb = je - js + 1;		_starpu_dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], lda, &			b[js + js * b_dim1], ldb, &c__[is + js * c_dim1], ldc, 			 &d__[is + is * d_dim1], ldd, &e[js + js * e_dim1], 			lde, &f[is + js * f_dim1], ldf, &scaloc, &dsum, &			dscale, &iwork[q + 2], &ppqq, &linfo);		if (linfo > 0) {		    *info = linfo;		}		if (scaloc != 1.) {		    i__3 = js - 1;		    for (k = 1; k <= i__3; ++k) {			_starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);			_starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L160: */		    }		    i__3 = je;		    for (k = js; k <= i__3; ++k) {			i__4 = is - 1;			_starpu_dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &c__1);			i__4 = is - 1;			_starpu_dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L170: */		    }		    i__3 = je;		    for (k = js; k <= i__3; ++k) {			i__4 = *m - ie;			_starpu_dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], &				c__1);			i__4 = *m - ie;			_starpu_dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &c__1)				;/* L180: */		    }		    i__3 = *n;		    for (k = je + 1; k <= i__3; ++k) {			_starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);			_starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L190: */		    }		    *scale *= scaloc;		}/*              Substitute R(I, J) and L(I, J) into remaining equation. */		if (j > p + 2) {		    i__3 = js - 1;		    _starpu_dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &c__[is + js * 			    c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &c_b52, &			    f[is + f_dim1], ldf);		    i__3 = js - 1;		    _starpu_dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &f[is + js * 			    f_dim1], ldf, &e[js * e_dim1 + 1], lde, &c_b52, &			    f[is + f_dim1], ldf);		}		if (i__ < p) {		    i__3 = *m - ie;		    _starpu_dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &a[is + (ie + 1)			     * a_dim1], lda, &c__[is + js * c_dim1], ldc, &			    c_b52, &c__[ie + 1 + js * c_dim1], ldc);		    i__3 = *m - ie;		    _starpu_dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &d__[is + (ie + 			    1) * d_dim1], ldd, &f[is + js * f_dim1], ldf, &			    c_b52, &c__[ie + 1 + js * c_dim1], ldc);		}/* L200: */	    }/* L210: */	}    }    work[1] = (doublereal) lwmin;    return 0;/*     End of DTGSYL */} /* _starpu_dtgsyl_ */
 |