| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 | 
							- /* dsytrd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__3 = 3;
 
- static integer c__2 = 2;
 
- static doublereal c_b22 = -1.;
 
- static doublereal c_b23 = 1.;
 
- /* Subroutine */ int _starpu_dsytrd_(char *uplo, integer *n, doublereal *a, integer *
 
- 	lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal *
 
- 	work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     /* Local variables */
 
-     integer i__, j, nb, kk, nx, iws;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer nbmin, iinfo;
 
-     logical upper;
 
-     extern /* Subroutine */ int _starpu_dsytd2_(char *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dsyr2k_(char *, char *, integer *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	     doublereal *, integer *), _starpu_dlatrd_(char *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, 
 
- 	    integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ldwork, lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSYTRD reduces a real symmetric matrix A to real symmetric */
 
- /*  tridiagonal form T by an orthogonal similarity transformation: */
 
- /*  Q**T * A * Q = T. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 
- /*          N-by-N upper triangular part of A contains the upper */
 
- /*          triangular part of the matrix A, and the strictly lower */
 
- /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 
- /*          leading N-by-N lower triangular part of A contains the lower */
 
- /*          triangular part of the matrix A, and the strictly upper */
 
- /*          triangular part of A is not referenced. */
 
- /*          On exit, if UPLO = 'U', the diagonal and first superdiagonal */
 
- /*          of A are overwritten by the corresponding elements of the */
 
- /*          tridiagonal matrix T, and the elements above the first */
 
- /*          superdiagonal, with the array TAU, represent the orthogonal */
 
- /*          matrix Q as a product of elementary reflectors; if UPLO */
 
- /*          = 'L', the diagonal and first subdiagonal of A are over- */
 
- /*          written by the corresponding elements of the tridiagonal */
 
- /*          matrix T, and the elements below the first subdiagonal, with */
 
- /*          the array TAU, represent the orthogonal matrix Q as a product */
 
- /*          of elementary reflectors. See Further Details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The diagonal elements of the tridiagonal matrix T: */
 
- /*          D(i) = A(i,i). */
 
- /*  E       (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The off-diagonal elements of the tridiagonal matrix T: */
 
- /*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The scalar factors of the elementary reflectors (see Further */
 
- /*          Details). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK.  LWORK >= 1. */
 
- /*          For optimum performance LWORK >= N*NB, where NB is the */
 
- /*          optimal blocksize. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
 
- /*  reflectors */
 
- /*     Q = H(n-1) . . . H(2) H(1). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
 
- /*  A(1:i-1,i+1), and tau in TAU(i). */
 
- /*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
 
- /*  reflectors */
 
- /*     Q = H(1) H(2) . . . H(n-1). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
 
- /*  and tau in TAU(i). */
 
- /*  The contents of A on exit are illustrated by the following examples */
 
- /*  with n = 5: */
 
- /*  if UPLO = 'U':                       if UPLO = 'L': */
 
- /*    (  d   e   v2  v3  v4 )              (  d                  ) */
 
- /*    (      d   e   v3  v4 )              (  e   d              ) */
 
- /*    (          d   e   v4 )              (  v1  e   d          ) */
 
- /*    (              d   e  )              (  v1  v2  e   d      ) */
 
- /*    (                  d  )              (  v1  v2  v3  e   d  ) */
 
- /*  where d and e denote diagonal and off-diagonal elements of T, and vi */
 
- /*  denotes an element of the vector defining H(i). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --d__;
 
-     --e;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     lquery = *lwork == -1;
 
-     if (! upper && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -4;
 
-     } else if (*lwork < 1 && ! lquery) {
 
- 	*info = -9;
 
-     }
 
-     if (*info == 0) {
 
- /*        Determine the block size. */
 
- 	nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
 
- 	lwkopt = *n * nb;
 
- 	work[1] = (doublereal) lwkopt;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSYTRD", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	work[1] = 1.;
 
- 	return 0;
 
-     }
 
-     nx = *n;
 
-     iws = 1;
 
-     if (nb > 1 && nb < *n) {
 
- /*        Determine when to cross over from blocked to unblocked code */
 
- /*        (last block is always handled by unblocked code). */
 
- /* Computing MAX */
 
- 	i__1 = nb, i__2 = _starpu_ilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &
 
- 		c_n1);
 
- 	nx = max(i__1,i__2);
 
- 	if (nx < *n) {
 
- /*           Determine if workspace is large enough for blocked code. */
 
- 	    ldwork = *n;
 
- 	    iws = ldwork * nb;
 
- 	    if (*lwork < iws) {
 
- /*              Not enough workspace to use optimal NB:  determine the */
 
- /*              minimum value of NB, and reduce NB or force use of */
 
- /*              unblocked code by setting NX = N. */
 
- /* Computing MAX */
 
- 		i__1 = *lwork / ldwork;
 
- 		nb = max(i__1,1);
 
- 		nbmin = _starpu_ilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
 
- 		if (nb < nbmin) {
 
- 		    nx = *n;
 
- 		}
 
- 	    }
 
- 	} else {
 
- 	    nx = *n;
 
- 	}
 
-     } else {
 
- 	nb = 1;
 
-     }
 
-     if (upper) {
 
- /*        Reduce the upper triangle of A. */
 
- /*        Columns 1:kk are handled by the unblocked method. */
 
- 	kk = *n - (*n - nx + nb - 1) / nb * nb;
 
- 	i__1 = kk + 1;
 
- 	i__2 = -nb;
 
- 	for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 
 
- 		i__2) {
 
- /*           Reduce columns i:i+nb-1 to tridiagonal form and form the */
 
- /*           matrix W which is needed to update the unreduced part of */
 
- /*           the matrix */
 
- 	    i__3 = i__ + nb - 1;
 
- 	    _starpu_dlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
 
- 		    work[1], &ldwork);
 
- /*           Update the unreduced submatrix A(1:i-1,1:i-1), using an */
 
- /*           update of the form:  A := A - V*W' - W*V' */
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1 
 
- 		    + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);
 
- /*           Copy superdiagonal elements back into A, and diagonal */
 
- /*           elements into D */
 
- 	    i__3 = i__ + nb - 1;
 
- 	    for (j = i__; j <= i__3; ++j) {
 
- 		a[j - 1 + j * a_dim1] = e[j - 1];
 
- 		d__[j] = a[j + j * a_dim1];
 
- /* L10: */
 
- 	    }
 
- /* L20: */
 
- 	}
 
- /*        Use unblocked code to reduce the last or only block */
 
- 	_starpu_dsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
 
-     } else {
 
- /*        Reduce the lower triangle of A */
 
- 	i__2 = *n - nx;
 
- 	i__1 = nb;
 
- 	for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
 
- /*           Reduce columns i:i+nb-1 to tridiagonal form and form the */
 
- /*           matrix W which is needed to update the unreduced part of */
 
- /*           the matrix */
 
- 	    i__3 = *n - i__ + 1;
 
- 	    _starpu_dlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
 
- 		    tau[i__], &work[1], &ldwork);
 
- /*           Update the unreduced submatrix A(i+ib:n,i+ib:n), using */
 
- /*           an update of the form:  A := A - V*W' - W*V' */
 
- 	    i__3 = *n - i__ - nb + 1;
 
- 	    _starpu_dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb + 
 
- 		    i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[
 
- 		    i__ + nb + (i__ + nb) * a_dim1], lda);
 
- /*           Copy subdiagonal elements back into A, and diagonal */
 
- /*           elements into D */
 
- 	    i__3 = i__ + nb - 1;
 
- 	    for (j = i__; j <= i__3; ++j) {
 
- 		a[j + 1 + j * a_dim1] = e[j];
 
- 		d__[j] = a[j + j * a_dim1];
 
- /* L30: */
 
- 	    }
 
- /* L40: */
 
- 	}
 
- /*        Use unblocked code to reduce the last or only block */
 
- 	i__1 = *n - i__ + 1;
 
- 	_starpu_dsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], 
 
- 		&tau[i__], &iinfo);
 
-     }
 
-     work[1] = (doublereal) lwkopt;
 
-     return 0;
 
- /*     End of DSYTRD */
 
- } /* _starpu_dsytrd_ */
 
 
  |