| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 | /* dsygvx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static doublereal c_b19 = 1.;/* Subroutine */ int _starpu_dsygvx_(integer *itype, char *jobz, char *range, char *	uplo, integer *n, doublereal *a, integer *lda, doublereal *b, integer 	*ldb, doublereal *vl, doublereal *vu, integer *il, integer *iu, 	doublereal *abstol, integer *m, doublereal *w, doublereal *z__, 	integer *ldz, doublereal *work, integer *lwork, integer *iwork, 	integer *ifail, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2;    /* Local variables */    integer nb;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *);    char trans[1];    extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *);    logical upper, wantz, alleig, indeig, valeig;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_dpotrf_(char *, integer *, doublereal *, 	    integer *, integer *);    integer lwkmin;    extern /* Subroutine */ int _starpu_dsygst_(integer *, char *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;    extern /* Subroutine */ int _starpu_dsyevx_(char *, char *, char *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *, integer *, integer 	    *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYGVX computes selected eigenvalues, and optionally, eigenvectors *//*  of a real generalized symmetric-definite eigenproblem, of the form *//*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A *//*  and B are assumed to be symmetric and B is also positive definite. *//*  Eigenvalues and eigenvectors can be selected by specifying either a *//*  range of values or a range of indices for the desired eigenvalues. *//*  Arguments *//*  ========= *//*  ITYPE   (input) INTEGER *//*          Specifies the problem type to be solved: *//*          = 1:  A*x = (lambda)*B*x *//*          = 2:  A*B*x = (lambda)*x *//*          = 3:  B*A*x = (lambda)*x *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  RANGE   (input) CHARACTER*1 *//*          = 'A': all eigenvalues will be found. *//*          = 'V': all eigenvalues in the half-open interval (VL,VU] *//*                 will be found. *//*          = 'I': the IL-th through IU-th eigenvalues will be found. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A and B are stored; *//*          = 'L':  Lower triangle of A and B are stored. *//*  N       (input) INTEGER *//*          The order of the matrix pencil (A,B).  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the *//*          leading N-by-N upper triangular part of A contains the *//*          upper triangular part of the matrix A.  If UPLO = 'L', *//*          the leading N-by-N lower triangular part of A contains *//*          the lower triangular part of the matrix A. *//*          On exit, the lower triangle (if UPLO='L') or the upper *//*          triangle (if UPLO='U') of A, including the diagonal, is *//*          destroyed. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the symmetric matrix B.  If UPLO = 'U', the *//*          leading N-by-N upper triangular part of B contains the *//*          upper triangular part of the matrix B.  If UPLO = 'L', *//*          the leading N-by-N lower triangular part of B contains *//*          the lower triangular part of the matrix B. *//*          On exit, if INFO <= N, the part of B containing the matrix is *//*          overwritten by the triangular factor U or L from the Cholesky *//*          factorization B = U**T*U or B = L*L**T. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  VL      (input) DOUBLE PRECISION *//*  VU      (input) DOUBLE PRECISION *//*          If RANGE='V', the lower and upper bounds of the interval to *//*          be searched for eigenvalues. VL < VU. *//*          Not referenced if RANGE = 'A' or 'I'. *//*  IL      (input) INTEGER *//*  IU      (input) INTEGER *//*          If RANGE='I', the indices (in ascending order) of the *//*          smallest and largest eigenvalues to be returned. *//*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. *//*          Not referenced if RANGE = 'A' or 'V'. *//*  ABSTOL  (input) DOUBLE PRECISION *//*          The absolute error tolerance for the eigenvalues. *//*          An approximate eigenvalue is accepted as converged *//*          when it is determined to lie in an interval [a,b] *//*          of width less than or equal to *//*                  ABSTOL + EPS *   max( |a|,|b| ) , *//*          where EPS is the machine precision.  If ABSTOL is less than *//*          or equal to zero, then  EPS*|T|  will be used in its place, *//*          where |T| is the 1-norm of the tridiagonal matrix obtained *//*          by reducing A to tridiagonal form. *//*          Eigenvalues will be computed most accurately when ABSTOL is *//*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. *//*          If this routine returns with INFO>0, indicating that some *//*          eigenvectors did not converge, try setting ABSTOL to *//*          2*DLAMCH('S'). *//*  M       (output) INTEGER *//*          The total number of eigenvalues found.  0 <= M <= N. *//*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          On normal exit, the first M elements contain the selected *//*          eigenvalues in ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) *//*          If JOBZ = 'N', then Z is not referenced. *//*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z *//*          contain the orthonormal eigenvectors of the matrix A *//*          corresponding to the selected eigenvalues, with the i-th *//*          column of Z holding the eigenvector associated with W(i). *//*          The eigenvectors are normalized as follows: *//*          if ITYPE = 1 or 2, Z**T*B*Z = I; *//*          if ITYPE = 3, Z**T*inv(B)*Z = I. *//*          If an eigenvector fails to converge, then that column of Z *//*          contains the latest approximation to the eigenvector, and the *//*          index of the eigenvector is returned in IFAIL. *//*          Note: the user must ensure that at least max(1,M) columns are *//*          supplied in the array Z; if RANGE = 'V', the exact value of M *//*          is not known in advance and an upper bound must be used. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= max(1,N). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The length of the array WORK.  LWORK >= max(1,8*N). *//*          For optimal efficiency, LWORK >= (NB+3)*N, *//*          where NB is the blocksize for DSYTRD returned by ILAENV. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace) INTEGER array, dimension (5*N) *//*  IFAIL   (output) INTEGER array, dimension (N) *//*          If JOBZ = 'V', then if INFO = 0, the first M elements of *//*          IFAIL are zero.  If INFO > 0, then IFAIL contains the *//*          indices of the eigenvectors that failed to converge. *//*          If JOBZ = 'N', then IFAIL is not referenced. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  DPOTRF or DSYEVX returned an error code: *//*             <= N:  if INFO = i, DSYEVX failed to converge; *//*                    i eigenvectors failed to converge.  Their indices *//*                    are stored in array IFAIL. *//*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading *//*                    minor of order i of B is not positive definite. *//*                    The factorization of B could not be completed and *//*                    no eigenvalues or eigenvectors were computed. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA *//* ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    --iwork;    --ifail;    /* Function Body */    upper = _starpu_lsame_(uplo, "U");    wantz = _starpu_lsame_(jobz, "V");    alleig = _starpu_lsame_(range, "A");    valeig = _starpu_lsame_(range, "V");    indeig = _starpu_lsame_(range, "I");    lquery = *lwork == -1;    *info = 0;    if (*itype < 1 || *itype > 3) {	*info = -1;    } else if (! (wantz || _starpu_lsame_(jobz, "N"))) {	*info = -2;    } else if (! (alleig || valeig || indeig)) {	*info = -3;    } else if (! (upper || _starpu_lsame_(uplo, "L"))) {	*info = -4;    } else if (*n < 0) {	*info = -5;    } else if (*lda < max(1,*n)) {	*info = -7;    } else if (*ldb < max(1,*n)) {	*info = -9;    } else {	if (valeig) {	    if (*n > 0 && *vu <= *vl) {		*info = -11;	    }	} else if (indeig) {	    if (*il < 1 || *il > max(1,*n)) {		*info = -12;	    } else if (*iu < min(*n,*il) || *iu > *n) {		*info = -13;	    }	}    }    if (*info == 0) {	if (*ldz < 1 || wantz && *ldz < *n) {	    *info = -18;	}    }    if (*info == 0) {/* Computing MAX */	i__1 = 1, i__2 = *n << 3;	lwkmin = max(i__1,i__2);	nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);/* Computing MAX */	i__1 = lwkmin, i__2 = (nb + 3) * *n;	lwkopt = max(i__1,i__2);	work[1] = (doublereal) lwkopt;	if (*lwork < lwkmin && ! lquery) {	    *info = -20;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSYGVX", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    *m = 0;    if (*n == 0) {	return 0;    }/*     Form a Cholesky factorization of B. */    _starpu_dpotrf_(uplo, n, &b[b_offset], ldb, info);    if (*info != 0) {	*info = *n + *info;	return 0;    }/*     Transform problem to standard eigenvalue problem and solve. */    _starpu_dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);    _starpu_dsyevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol, 	    m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &iwork[1], &ifail[	    1], info);    if (wantz) {/*        Backtransform eigenvectors to the original problem. */	if (*info > 0) {	    *m = *info - 1;	}	if (*itype == 1 || *itype == 2) {/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; *//*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */	    if (upper) {		*(unsigned char *)trans = 'N';	    } else {		*(unsigned char *)trans = 'T';	    }	    _starpu_dtrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset], ldb, &z__[z_offset], ldz);	} else if (*itype == 3) {/*           For B*A*x=(lambda)*x; *//*           backtransform eigenvectors: x = L*y or U'*y */	    if (upper) {		*(unsigned char *)trans = 'T';	    } else {		*(unsigned char *)trans = 'N';	    }	    _starpu_dtrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset], ldb, &z__[z_offset], ldz);	}    }/*     Set WORK(1) to optimal workspace size. */    work[1] = (doublereal) lwkopt;    return 0;/*     End of DSYGVX */} /* _starpu_dsygvx_ */
 |