| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 | 
							- /* dstevd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dstevd_(char *jobz, integer *n, doublereal *d__, 
 
- 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
 
- 	integer *lwork, integer *iwork, integer *liwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal eps, rmin, rmax, tnrm;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     doublereal sigma;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer lwmin;
 
-     logical wantz;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     integer iscale;
 
-     extern /* Subroutine */ int _starpu_dstedc_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *, integer *, integer *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dsterf_(integer *, doublereal *, doublereal *, 
 
- 	     integer *);
 
-     integer liwmin;
 
-     doublereal smlnum;
 
-     logical lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSTEVD computes all eigenvalues and, optionally, eigenvectors of a */
 
- /*  real symmetric tridiagonal matrix. If eigenvectors are desired, it */
 
- /*  uses a divide and conquer algorithm. */
 
- /*  The divide and conquer algorithm makes very mild assumptions about */
 
- /*  floating point arithmetic. It will work on machines with a guard */
 
- /*  digit in add/subtract, or on those binary machines without guard */
 
- /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
 
- /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix.  N >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the n diagonal elements of the tridiagonal matrix */
 
- /*          A. */
 
- /*          On exit, if INFO = 0, the eigenvalues in ascending order. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 
- /*          matrix A, stored in elements 1 to N-1 of E. */
 
- /*          On exit, the contents of E are destroyed. */
 
- /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
 
- /*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
 
- /*          eigenvectors of the matrix A, with the i-th column of Z */
 
- /*          holding the eigenvector associated with D(i). */
 
- /*          If JOBZ = 'N', then Z is not referenced. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          JOBZ = 'V', LDZ >= max(1,N). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, */
 
- /*                                         dimension (LWORK) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. */
 
- /*          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1. */
 
- /*          If JOBZ  = 'V' and N > 1 then LWORK must be at least */
 
- /*                         ( 1 + 4*N + N**2 ). */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal sizes of the WORK and IWORK */
 
- /*          arrays, returns these values as the first entries of the WORK */
 
- /*          and IWORK arrays, and no error message related to LWORK or */
 
- /*          LIWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 
- /*  LIWORK  (input) INTEGER */
 
- /*          The dimension of the array IWORK. */
 
- /*          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1. */
 
- /*          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N. */
 
- /*          If LIWORK = -1, then a workspace query is assumed; the */
 
- /*          routine only calculates the optimal sizes of the WORK and */
 
- /*          IWORK arrays, returns these values as the first entries of */
 
- /*          the WORK and IWORK arrays, and no error message related to */
 
- /*          LWORK or LIWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the algorithm failed to converge; i */
 
- /*                off-diagonal elements of E did not converge to zero. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     wantz = _starpu_lsame_(jobz, "V");
 
-     lquery = *lwork == -1 || *liwork == -1;
 
-     *info = 0;
 
-     liwmin = 1;
 
-     lwmin = 1;
 
-     if (*n > 1 && wantz) {
 
- /* Computing 2nd power */
 
- 	i__1 = *n;
 
- 	lwmin = (*n << 2) + 1 + i__1 * i__1;
 
- 	liwmin = *n * 5 + 3;
 
-     }
 
-     if (! (wantz || _starpu_lsame_(jobz, "N"))) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*ldz < 1 || wantz && *ldz < *n) {
 
- 	*info = -6;
 
-     }
 
-     if (*info == 0) {
 
- 	work[1] = (doublereal) lwmin;
 
- 	iwork[1] = liwmin;
 
- 	if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -8;
 
- 	} else if (*liwork < liwmin && ! lquery) {
 
- 	    *info = -10;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSTEVD", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	if (wantz) {
 
- 	    z__[z_dim1 + 1] = 1.;
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Get machine constants. */
 
-     safmin = _starpu_dlamch_("Safe minimum");
 
-     eps = _starpu_dlamch_("Precision");
 
-     smlnum = safmin / eps;
 
-     bignum = 1. / smlnum;
 
-     rmin = sqrt(smlnum);
 
-     rmax = sqrt(bignum);
 
- /*     Scale matrix to allowable range, if necessary. */
 
-     iscale = 0;
 
-     tnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);
 
-     if (tnrm > 0. && tnrm < rmin) {
 
- 	iscale = 1;
 
- 	sigma = rmin / tnrm;
 
-     } else if (tnrm > rmax) {
 
- 	iscale = 1;
 
- 	sigma = rmax / tnrm;
 
-     }
 
-     if (iscale == 1) {
 
- 	_starpu_dscal_(n, &sigma, &d__[1], &c__1);
 
- 	i__1 = *n - 1;
 
- 	_starpu_dscal_(&i__1, &sigma, &e[1], &c__1);
 
-     }
 
- /*     For eigenvalues only, call DSTERF.  For eigenvalues and */
 
- /*     eigenvectors, call DSTEDC. */
 
-     if (! wantz) {
 
- 	_starpu_dsterf_(n, &d__[1], &e[1], info);
 
-     } else {
 
- 	_starpu_dstedc_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], lwork, 
 
- 		&iwork[1], liwork, info);
 
-     }
 
- /*     If matrix was scaled, then rescale eigenvalues appropriately. */
 
-     if (iscale == 1) {
 
- 	d__1 = 1. / sigma;
 
- 	_starpu_dscal_(n, &d__1, &d__[1], &c__1);
 
-     }
 
-     work[1] = (doublereal) lwmin;
 
-     iwork[1] = liwmin;
 
-     return 0;
 
- /*     End of DSTEVD */
 
- } /* _starpu_dstevd_ */
 
 
  |