| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714 | 
							- /* dsbtrd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b9 = 0.;
 
- static doublereal c_b10 = 1.;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dsbtrd_(char *vect, char *uplo, integer *n, integer *kd, 
 
- 	doublereal *ab, integer *ldab, doublereal *d__, doublereal *e, 
 
- 	doublereal *q, integer *ldq, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4, 
 
- 	    i__5;
 
-     /* Local variables */
 
-     integer i__, j, k, l, i2, j1, j2, nq, nr, kd1, ibl, iqb, kdn, jin, nrt, 
 
- 	    kdm1, inca, jend, lend, jinc, incx, last;
 
-     doublereal temp;
 
-     extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *);
 
-     integer j1end, j1inc, iqend;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     logical initq, wantq, upper;
 
-     extern /* Subroutine */ int _starpu_dlar2v_(integer *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, doublereal *, doublereal *, integer *);
 
-     integer iqaend;
 
-     extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *), 
 
- 	    _starpu_dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *), _starpu_xerbla_(char *, integer *), _starpu_dlargv_(
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dlartv_(integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSBTRD reduces a real symmetric band matrix A to symmetric */
 
- /*  tridiagonal form T by an orthogonal similarity transformation: */
 
- /*  Q**T * A * Q = T. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  VECT    (input) CHARACTER*1 */
 
- /*          = 'N':  do not form Q; */
 
- /*          = 'V':  form Q; */
 
- /*          = 'U':  update a matrix X, by forming X*Q. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  KD      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
 
- /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the upper or lower triangle of the symmetric band */
 
- /*          matrix A, stored in the first KD+1 rows of the array.  The */
 
- /*          j-th column of A is stored in the j-th column of the array AB */
 
- /*          as follows: */
 
- /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
 
- /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
 
- /*          On exit, the diagonal elements of AB are overwritten by the */
 
- /*          diagonal elements of the tridiagonal matrix T; if KD > 0, the */
 
- /*          elements on the first superdiagonal (if UPLO = 'U') or the */
 
- /*          first subdiagonal (if UPLO = 'L') are overwritten by the */
 
- /*          off-diagonal elements of T; the rest of AB is overwritten by */
 
- /*          values generated during the reduction. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= KD+1. */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The diagonal elements of the tridiagonal matrix T. */
 
- /*  E       (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The off-diagonal elements of the tridiagonal matrix T: */
 
- /*          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
 
- /*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*          On entry, if VECT = 'U', then Q must contain an N-by-N */
 
- /*          matrix X; if VECT = 'N' or 'V', then Q need not be set. */
 
- /*          On exit: */
 
- /*          if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; */
 
- /*          if VECT = 'U', Q contains the product X*Q; */
 
- /*          if VECT = 'N', the array Q is not referenced. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q. */
 
- /*          LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Modified by Linda Kaufman, Bell Labs. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --d__;
 
-     --e;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --work;
 
-     /* Function Body */
 
-     initq = _starpu_lsame_(vect, "V");
 
-     wantq = initq || _starpu_lsame_(vect, "U");
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     kd1 = *kd + 1;
 
-     kdm1 = *kd - 1;
 
-     incx = *ldab - 1;
 
-     iqend = 1;
 
-     *info = 0;
 
-     if (! wantq && ! _starpu_lsame_(vect, "N")) {
 
- 	*info = -1;
 
-     } else if (! upper && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*kd < 0) {
 
- 	*info = -4;
 
-     } else if (*ldab < kd1) {
 
- 	*info = -6;
 
-     } else if (*ldq < max(1,*n) && wantq) {
 
- 	*info = -10;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSBTRD", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Initialize Q to the unit matrix, if needed */
 
-     if (initq) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b9, &c_b10, &q[q_offset], ldq);
 
-     }
 
- /*     Wherever possible, plane rotations are generated and applied in */
 
- /*     vector operations of length NR over the index set J1:J2:KD1. */
 
- /*     The cosines and sines of the plane rotations are stored in the */
 
- /*     arrays D and WORK. */
 
-     inca = kd1 * *ldab;
 
- /* Computing MIN */
 
-     i__1 = *n - 1;
 
-     kdn = min(i__1,*kd);
 
-     if (upper) {
 
- 	if (*kd > 1) {
 
- /*           Reduce to tridiagonal form, working with upper triangle */
 
- 	    nr = 0;
 
- 	    j1 = kdn + 2;
 
- 	    j2 = 1;
 
- 	    i__1 = *n - 2;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*              Reduce i-th row of matrix to tridiagonal form */
 
- 		for (k = kdn + 1; k >= 2; --k) {
 
- 		    j1 += kdn;
 
- 		    j2 += kdn;
 
- 		    if (nr > 0) {
 
- /*                    generate plane rotations to annihilate nonzero */
 
- /*                    elements which have been created outside the band */
 
- 			_starpu_dlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
 
- 				work[j1], &kd1, &d__[j1], &kd1);
 
- /*                    apply rotations from the right */
 
- /*                    Dependent on the the number of diagonals either */
 
- /*                    DLARTV or DROT is used */
 
- 			if (nr >= (*kd << 1) - 1) {
 
- 			    i__2 = *kd - 1;
 
- 			    for (l = 1; l <= i__2; ++l) {
 
- 				_starpu_dlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1], 
 
- 					&inca, &ab[l + j1 * ab_dim1], &inca, &
 
- 					d__[j1], &work[j1], &kd1);
 
- /* L10: */
 
- 			    }
 
- 			} else {
 
- 			    jend = j1 + (nr - 1) * kd1;
 
- 			    i__2 = jend;
 
- 			    i__3 = kd1;
 
- 			    for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <= 
 
- 				    i__2; jinc += i__3) {
 
- 				_starpu_drot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
 
- 					c__1, &ab[jinc * ab_dim1 + 1], &c__1, 
 
- 					&d__[jinc], &work[jinc]);
 
- /* L20: */
 
- 			    }
 
- 			}
 
- 		    }
 
- 		    if (k > 2) {
 
- 			if (k <= *n - i__ + 1) {
 
- /*                       generate plane rotation to annihilate a(i,i+k-1) */
 
- /*                       within the band */
 
- 			    _starpu_dlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
 
- , &ab[*kd - k + 2 + (i__ + k - 1) * 
 
- 				    ab_dim1], &d__[i__ + k - 1], &work[i__ + 
 
- 				    k - 1], &temp);
 
- 			    ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] = temp;
 
- /*                       apply rotation from the right */
 
- 			    i__3 = k - 3;
 
- 			    _starpu_drot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) * 
 
- 				    ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ + 
 
- 				    k - 1) * ab_dim1], &c__1, &d__[i__ + k - 
 
- 				    1], &work[i__ + k - 1]);
 
- 			}
 
- 			++nr;
 
- 			j1 = j1 - kdn - 1;
 
- 		    }
 
- /*                 apply plane rotations from both sides to diagonal */
 
- /*                 blocks */
 
- 		    if (nr > 0) {
 
- 			_starpu_dlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 + 
 
- 				j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca, 
 
- 				 &d__[j1], &work[j1], &kd1);
 
- 		    }
 
- /*                 apply plane rotations from the left */
 
- 		    if (nr > 0) {
 
- 			if ((*kd << 1) - 1 < nr) {
 
- /*                    Dependent on the the number of diagonals either */
 
- /*                    DLARTV or DROT is used */
 
- 			    i__3 = *kd - 1;
 
- 			    for (l = 1; l <= i__3; ++l) {
 
- 				if (j2 + l > *n) {
 
- 				    nrt = nr - 1;
 
- 				} else {
 
- 				    nrt = nr;
 
- 				}
 
- 				if (nrt > 0) {
 
- 				    _starpu_dlartv_(&nrt, &ab[*kd - l + (j1 + l) * 
 
- 					    ab_dim1], &inca, &ab[*kd - l + 1 
 
- 					    + (j1 + l) * ab_dim1], &inca, &
 
- 					    d__[j1], &work[j1], &kd1);
 
- 				}
 
- /* L30: */
 
- 			    }
 
- 			} else {
 
- 			    j1end = j1 + kd1 * (nr - 2);
 
- 			    if (j1end >= j1) {
 
- 				i__3 = j1end;
 
- 				i__2 = kd1;
 
- 				for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
 
- 					 i__3; jin += i__2) {
 
- 				    i__4 = *kd - 1;
 
- 				    _starpu_drot_(&i__4, &ab[*kd - 1 + (jin + 1) * 
 
- 					    ab_dim1], &incx, &ab[*kd + (jin + 
 
- 					    1) * ab_dim1], &incx, &d__[jin], &
 
- 					    work[jin]);
 
- /* L40: */
 
- 				}
 
- 			    }
 
- /* Computing MIN */
 
- 			    i__2 = kdm1, i__3 = *n - j2;
 
- 			    lend = min(i__2,i__3);
 
- 			    last = j1end + kd1;
 
- 			    if (lend > 0) {
 
- 				_starpu_drot_(&lend, &ab[*kd - 1 + (last + 1) * 
 
- 					ab_dim1], &incx, &ab[*kd + (last + 1) 
 
- 					* ab_dim1], &incx, &d__[last], &work[
 
- 					last]);
 
- 			    }
 
- 			}
 
- 		    }
 
- 		    if (wantq) {
 
- /*                    accumulate product of plane rotations in Q */
 
- 			if (initq) {
 
- /*                 take advantage of the fact that Q was */
 
- /*                 initially the Identity matrix */
 
- 			    iqend = max(iqend,j2);
 
- /* Computing MAX */
 
- 			    i__2 = 0, i__3 = k - 3;
 
- 			    i2 = max(i__2,i__3);
 
- 			    iqaend = i__ * *kd + 1;
 
- 			    if (k == 2) {
 
- 				iqaend += *kd;
 
- 			    }
 
- 			    iqaend = min(iqaend,iqend);
 
- 			    i__2 = j2;
 
- 			    i__3 = kd1;
 
- 			    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j 
 
- 				    += i__3) {
 
- 				ibl = i__ - i2 / kdm1;
 
- 				++i2;
 
- /* Computing MAX */
 
- 				i__4 = 1, i__5 = j - ibl;
 
- 				iqb = max(i__4,i__5);
 
- 				nq = iqaend + 1 - iqb;
 
- /* Computing MIN */
 
- 				i__4 = iqaend + *kd;
 
- 				iqaend = min(i__4,iqend);
 
- 				_starpu_drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, 
 
- 					&q[iqb + j * q_dim1], &c__1, &d__[j], 
 
- 					&work[j]);
 
- /* L50: */
 
- 			    }
 
- 			} else {
 
- 			    i__3 = j2;
 
- 			    i__2 = kd1;
 
- 			    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j 
 
- 				    += i__2) {
 
- 				_starpu_drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
 
- 					j * q_dim1 + 1], &c__1, &d__[j], &
 
- 					work[j]);
 
- /* L60: */
 
- 			    }
 
- 			}
 
- 		    }
 
- 		    if (j2 + kdn > *n) {
 
- /*                    adjust J2 to keep within the bounds of the matrix */
 
- 			--nr;
 
- 			j2 = j2 - kdn - 1;
 
- 		    }
 
- 		    i__2 = j2;
 
- 		    i__3 = kd1;
 
- 		    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) 
 
- 			    {
 
- /*                    create nonzero element a(j-1,j+kd) outside the band */
 
- /*                    and store it in WORK */
 
- 			work[j + *kd] = work[j] * ab[(j + *kd) * ab_dim1 + 1];
 
- 			ab[(j + *kd) * ab_dim1 + 1] = d__[j] * ab[(j + *kd) * 
 
- 				ab_dim1 + 1];
 
- /* L70: */
 
- 		    }
 
- /* L80: */
 
- 		}
 
- /* L90: */
 
- 	    }
 
- 	}
 
- 	if (*kd > 0) {
 
- /*           copy off-diagonal elements to E */
 
- 	    i__1 = *n - 1;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		e[i__] = ab[*kd + (i__ + 1) * ab_dim1];
 
- /* L100: */
 
- 	    }
 
- 	} else {
 
- /*           set E to zero if original matrix was diagonal */
 
- 	    i__1 = *n - 1;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		e[i__] = 0.;
 
- /* L110: */
 
- 	    }
 
- 	}
 
- /*        copy diagonal elements to D */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    d__[i__] = ab[kd1 + i__ * ab_dim1];
 
- /* L120: */
 
- 	}
 
-     } else {
 
- 	if (*kd > 1) {
 
- /*           Reduce to tridiagonal form, working with lower triangle */
 
- 	    nr = 0;
 
- 	    j1 = kdn + 2;
 
- 	    j2 = 1;
 
- 	    i__1 = *n - 2;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*              Reduce i-th column of matrix to tridiagonal form */
 
- 		for (k = kdn + 1; k >= 2; --k) {
 
- 		    j1 += kdn;
 
- 		    j2 += kdn;
 
- 		    if (nr > 0) {
 
- /*                    generate plane rotations to annihilate nonzero */
 
- /*                    elements which have been created outside the band */
 
- 			_starpu_dlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
 
- 				work[j1], &kd1, &d__[j1], &kd1);
 
- /*                    apply plane rotations from one side */
 
- /*                    Dependent on the the number of diagonals either */
 
- /*                    DLARTV or DROT is used */
 
- 			if (nr > (*kd << 1) - 1) {
 
- 			    i__3 = *kd - 1;
 
- 			    for (l = 1; l <= i__3; ++l) {
 
- 				_starpu_dlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) * 
 
- 					ab_dim1], &inca, &ab[kd1 - l + 1 + (
 
- 					j1 - kd1 + l) * ab_dim1], &inca, &d__[
 
- 					j1], &work[j1], &kd1);
 
- /* L130: */
 
- 			    }
 
- 			} else {
 
- 			    jend = j1 + kd1 * (nr - 1);
 
- 			    i__3 = jend;
 
- 			    i__2 = kd1;
 
- 			    for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <= 
 
- 				    i__3; jinc += i__2) {
 
- 				_starpu_drot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
 
- , &incx, &ab[kd1 + (jinc - *kd) * 
 
- 					ab_dim1], &incx, &d__[jinc], &work[
 
- 					jinc]);
 
- /* L140: */
 
- 			    }
 
- 			}
 
- 		    }
 
- 		    if (k > 2) {
 
- 			if (k <= *n - i__ + 1) {
 
- /*                       generate plane rotation to annihilate a(i+k-1,i) */
 
- /*                       within the band */
 
- 			    _starpu_dlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ * 
 
- 				    ab_dim1], &d__[i__ + k - 1], &work[i__ + 
 
- 				    k - 1], &temp);
 
- 			    ab[k - 1 + i__ * ab_dim1] = temp;
 
- /*                       apply rotation from the left */
 
- 			    i__2 = k - 3;
 
- 			    i__3 = *ldab - 1;
 
- 			    i__4 = *ldab - 1;
 
- 			    _starpu_drot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
 
- 				    i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
 
- 				    i__4, &d__[i__ + k - 1], &work[i__ + k - 
 
- 				    1]);
 
- 			}
 
- 			++nr;
 
- 			j1 = j1 - kdn - 1;
 
- 		    }
 
- /*                 apply plane rotations from both sides to diagonal */
 
- /*                 blocks */
 
- 		    if (nr > 0) {
 
- 			_starpu_dlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 * 
 
- 				ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
 
- 				inca, &d__[j1], &work[j1], &kd1);
 
- 		    }
 
- /*                 apply plane rotations from the right */
 
- /*                    Dependent on the the number of diagonals either */
 
- /*                    DLARTV or DROT is used */
 
- 		    if (nr > 0) {
 
- 			if (nr > (*kd << 1) - 1) {
 
- 			    i__2 = *kd - 1;
 
- 			    for (l = 1; l <= i__2; ++l) {
 
- 				if (j2 + l > *n) {
 
- 				    nrt = nr - 1;
 
- 				} else {
 
- 				    nrt = nr;
 
- 				}
 
- 				if (nrt > 0) {
 
- 				    _starpu_dlartv_(&nrt, &ab[l + 2 + (j1 - 1) * 
 
- 					    ab_dim1], &inca, &ab[l + 1 + j1 * 
 
- 					    ab_dim1], &inca, &d__[j1], &work[
 
- 					    j1], &kd1);
 
- 				}
 
- /* L150: */
 
- 			    }
 
- 			} else {
 
- 			    j1end = j1 + kd1 * (nr - 2);
 
- 			    if (j1end >= j1) {
 
- 				i__2 = j1end;
 
- 				i__3 = kd1;
 
- 				for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 : 
 
- 					j1inc <= i__2; j1inc += i__3) {
 
- 				    _starpu_drot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 + 
 
- 					    3], &c__1, &ab[j1inc * ab_dim1 + 
 
- 					    2], &c__1, &d__[j1inc], &work[
 
- 					    j1inc]);
 
- /* L160: */
 
- 				}
 
- 			    }
 
- /* Computing MIN */
 
- 			    i__3 = kdm1, i__2 = *n - j2;
 
- 			    lend = min(i__3,i__2);
 
- 			    last = j1end + kd1;
 
- 			    if (lend > 0) {
 
- 				_starpu_drot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
 
- 					c__1, &ab[last * ab_dim1 + 2], &c__1, 
 
- 					&d__[last], &work[last]);
 
- 			    }
 
- 			}
 
- 		    }
 
- 		    if (wantq) {
 
- /*                    accumulate product of plane rotations in Q */
 
- 			if (initq) {
 
- /*                 take advantage of the fact that Q was */
 
- /*                 initially the Identity matrix */
 
- 			    iqend = max(iqend,j2);
 
- /* Computing MAX */
 
- 			    i__3 = 0, i__2 = k - 3;
 
- 			    i2 = max(i__3,i__2);
 
- 			    iqaend = i__ * *kd + 1;
 
- 			    if (k == 2) {
 
- 				iqaend += *kd;
 
- 			    }
 
- 			    iqaend = min(iqaend,iqend);
 
- 			    i__3 = j2;
 
- 			    i__2 = kd1;
 
- 			    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j 
 
- 				    += i__2) {
 
- 				ibl = i__ - i2 / kdm1;
 
- 				++i2;
 
- /* Computing MAX */
 
- 				i__4 = 1, i__5 = j - ibl;
 
- 				iqb = max(i__4,i__5);
 
- 				nq = iqaend + 1 - iqb;
 
- /* Computing MIN */
 
- 				i__4 = iqaend + *kd;
 
- 				iqaend = min(i__4,iqend);
 
- 				_starpu_drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, 
 
- 					&q[iqb + j * q_dim1], &c__1, &d__[j], 
 
- 					&work[j]);
 
- /* L170: */
 
- 			    }
 
- 			} else {
 
- 			    i__2 = j2;
 
- 			    i__3 = kd1;
 
- 			    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j 
 
- 				    += i__3) {
 
- 				_starpu_drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
 
- 					j * q_dim1 + 1], &c__1, &d__[j], &
 
- 					work[j]);
 
- /* L180: */
 
- 			    }
 
- 			}
 
- 		    }
 
- 		    if (j2 + kdn > *n) {
 
- /*                    adjust J2 to keep within the bounds of the matrix */
 
- 			--nr;
 
- 			j2 = j2 - kdn - 1;
 
- 		    }
 
- 		    i__3 = j2;
 
- 		    i__2 = kd1;
 
- 		    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) 
 
- 			    {
 
- /*                    create nonzero element a(j+kd,j-1) outside the */
 
- /*                    band and store it in WORK */
 
- 			work[j + *kd] = work[j] * ab[kd1 + j * ab_dim1];
 
- 			ab[kd1 + j * ab_dim1] = d__[j] * ab[kd1 + j * ab_dim1]
 
- 				;
 
- /* L190: */
 
- 		    }
 
- /* L200: */
 
- 		}
 
- /* L210: */
 
- 	    }
 
- 	}
 
- 	if (*kd > 0) {
 
- /*           copy off-diagonal elements to E */
 
- 	    i__1 = *n - 1;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		e[i__] = ab[i__ * ab_dim1 + 2];
 
- /* L220: */
 
- 	    }
 
- 	} else {
 
- /*           set E to zero if original matrix was diagonal */
 
- 	    i__1 = *n - 1;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		e[i__] = 0.;
 
- /* L230: */
 
- 	    }
 
- 	}
 
- /*        copy diagonal elements to D */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    d__[i__] = ab[i__ * ab_dim1 + 1];
 
- /* L240: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DSBTRD */
 
- } /* _starpu_dsbtrd_ */
 
 
  |