| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 | /* dpttrf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dpttrf_(integer *n, doublereal *d__, doublereal *e, 	integer *info){    /* System generated locals */    integer i__1;    /* Local variables */    integer i__, i4;    doublereal ei;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPTTRF computes the L*D*L' factorization of a real symmetric *//*  positive definite tridiagonal matrix A.  The factorization may also *//*  be regarded as having the form A = U'*D*U. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the n diagonal elements of the tridiagonal matrix *//*          A.  On exit, the n diagonal elements of the diagonal matrix *//*          D from the L*D*L' factorization of A. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, the (n-1) subdiagonal elements of the tridiagonal *//*          matrix A.  On exit, the (n-1) subdiagonal elements of the *//*          unit bidiagonal factor L from the L*D*L' factorization of A. *//*          E can also be regarded as the superdiagonal of the unit *//*          bidiagonal factor U from the U'*D*U factorization of A. *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -k, the k-th argument had an illegal value *//*          > 0: if INFO = k, the leading minor of order k is not *//*               positive definite; if k < N, the factorization could not *//*               be completed, while if k = N, the factorization was *//*               completed, but D(N) <= 0. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --e;    --d__;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;	i__1 = -(*info);	_starpu_xerbla_("DPTTRF", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Compute the L*D*L' (or U'*D*U) factorization of A. */    i4 = (*n - 1) % 4;    i__1 = i4;    for (i__ = 1; i__ <= i__1; ++i__) {	if (d__[i__] <= 0.) {	    *info = i__;	    goto L30;	}	ei = e[i__];	e[i__] = ei / d__[i__];	d__[i__ + 1] -= e[i__] * ei;/* L10: */    }    i__1 = *n - 4;    for (i__ = i4 + 1; i__ <= i__1; i__ += 4) {/*        Drop out of the loop if d(i) <= 0: the matrix is not positive *//*        definite. */	if (d__[i__] <= 0.) {	    *info = i__;	    goto L30;	}/*        Solve for e(i) and d(i+1). */	ei = e[i__];	e[i__] = ei / d__[i__];	d__[i__ + 1] -= e[i__] * ei;	if (d__[i__ + 1] <= 0.) {	    *info = i__ + 1;	    goto L30;	}/*        Solve for e(i+1) and d(i+2). */	ei = e[i__ + 1];	e[i__ + 1] = ei / d__[i__ + 1];	d__[i__ + 2] -= e[i__ + 1] * ei;	if (d__[i__ + 2] <= 0.) {	    *info = i__ + 2;	    goto L30;	}/*        Solve for e(i+2) and d(i+3). */	ei = e[i__ + 2];	e[i__ + 2] = ei / d__[i__ + 2];	d__[i__ + 3] -= e[i__ + 2] * ei;	if (d__[i__ + 3] <= 0.) {	    *info = i__ + 3;	    goto L30;	}/*        Solve for e(i+3) and d(i+4). */	ei = e[i__ + 3];	e[i__ + 3] = ei / d__[i__ + 3];	d__[i__ + 4] -= e[i__ + 3] * ei;/* L20: */    }/*     Check d(n) for positive definiteness. */    if (d__[*n] <= 0.) {	*info = *n;    }L30:    return 0;/*     End of DPTTRF */} /* _starpu_dpttrf_ */
 |