| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 | /* dlasd5.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlasd5_(integer *i__, doublereal *d__, doublereal *z__, 	doublereal *delta, doublereal *rho, doublereal *dsigma, doublereal *	work){    /* System generated locals */    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal b, c__, w, del, tau, delsq;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This subroutine computes the square root of the I-th eigenvalue *//*  of a positive symmetric rank-one modification of a 2-by-2 diagonal *//*  matrix *//*             diag( D ) * diag( D ) +  RHO *  Z * transpose(Z) . *//*  The diagonal entries in the array D are assumed to satisfy *//*             0 <= D(i) < D(j)  for  i < j . *//*  We also assume RHO > 0 and that the Euclidean norm of the vector *//*  Z is one. *//*  Arguments *//*  ========= *//*  I      (input) INTEGER *//*         The index of the eigenvalue to be computed.  I = 1 or I = 2. *//*  D      (input) DOUBLE PRECISION array, dimension ( 2 ) *//*         The original eigenvalues.  We assume 0 <= D(1) < D(2). *//*  Z      (input) DOUBLE PRECISION array, dimension ( 2 ) *//*         The components of the updating vector. *//*  DELTA  (output) DOUBLE PRECISION array, dimension ( 2 ) *//*         Contains (D(j) - sigma_I) in its  j-th component. *//*         The vector DELTA contains the information necessary *//*         to construct the eigenvectors. *//*  RHO    (input) DOUBLE PRECISION *//*         The scalar in the symmetric updating formula. *//*  DSIGMA (output) DOUBLE PRECISION *//*         The computed sigma_I, the I-th updated eigenvalue. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension ( 2 ) *//*         WORK contains (D(j) + sigma_I) in its  j-th component. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ren-Cang Li, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --work;    --delta;    --z__;    --d__;    /* Function Body */    del = d__[2] - d__[1];    delsq = del * (d__[2] + d__[1]);    if (*i__ == 1) {	w = *rho * 4. * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.) - z__[1] * 		z__[1] / (d__[1] * 3. + d__[2])) / del + 1.;	if (w > 0.) {	    b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);	    c__ = *rho * z__[1] * z__[1] * delsq;/*           B > ZERO, always *//*           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */	    tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));/*           The following TAU is DSIGMA - D( 1 ) */	    tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);	    *dsigma = d__[1] + tau;	    delta[1] = -tau;	    delta[2] = del - tau;	    work[1] = d__[1] * 2. + tau;	    work[2] = d__[1] + tau + d__[2];/*           DELTA( 1 ) = -Z( 1 ) / TAU *//*           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */	} else {	    b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);	    c__ = *rho * z__[2] * z__[2] * delsq;/*           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */	    if (b > 0.) {		tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));	    } else {		tau = (b - sqrt(b * b + c__ * 4.)) / 2.;	    }/*           The following TAU is DSIGMA - D( 2 ) */	    tau /= d__[2] + sqrt((d__1 = d__[2] * d__[2] + tau, abs(d__1)));	    *dsigma = d__[2] + tau;	    delta[1] = -(del + tau);	    delta[2] = -tau;	    work[1] = d__[1] + tau + d__[2];	    work[2] = d__[2] * 2. + tau;/*           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) *//*           DELTA( 2 ) = -Z( 2 ) / TAU */	}/*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) *//*        DELTA( 1 ) = DELTA( 1 ) / TEMP *//*        DELTA( 2 ) = DELTA( 2 ) / TEMP */    } else {/*        Now I=2 */	b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);	c__ = *rho * z__[2] * z__[2] * delsq;/*        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */	if (b > 0.) {	    tau = (b + sqrt(b * b + c__ * 4.)) / 2.;	} else {	    tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));	}/*        The following TAU is DSIGMA - D( 2 ) */	tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);	*dsigma = d__[2] + tau;	delta[1] = -(del + tau);	delta[2] = -tau;	work[1] = d__[1] + tau + d__[2];	work[2] = d__[2] * 2. + tau;/*        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) *//*        DELTA( 2 ) = -Z( 2 ) / TAU *//*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) *//*        DELTA( 1 ) = DELTA( 1 ) / TEMP *//*        DELTA( 2 ) = DELTA( 2 ) / TEMP */    }    return 0;/*     End of DLASD5 */} /* _starpu_dlasd5_ */
 |