| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 | /* dlarft.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b8 = 0.;/* Subroutine */ int _starpu_dlarft_(char *direct, char *storev, integer *n, integer *	k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t, 	integer *ldt){    /* System generated locals */    integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;    doublereal d__1;    /* Local variables */    integer i__, j, prevlastv;    doublereal vii;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    integer lastv;    extern /* Subroutine */ int _starpu_dtrmv_(char *, char *, char *, integer *, 	    doublereal *, integer *, doublereal *, integer *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLARFT forms the triangular factor T of a real block reflector H *//*  of order n, which is defined as a product of k elementary reflectors. *//*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; *//*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. *//*  If STOREV = 'C', the vector which defines the elementary reflector *//*  H(i) is stored in the i-th column of the array V, and *//*     H  =  I - V * T * V' *//*  If STOREV = 'R', the vector which defines the elementary reflector *//*  H(i) is stored in the i-th row of the array V, and *//*     H  =  I - V' * T * V *//*  Arguments *//*  ========= *//*  DIRECT  (input) CHARACTER*1 *//*          Specifies the order in which the elementary reflectors are *//*          multiplied to form the block reflector: *//*          = 'F': H = H(1) H(2) . . . H(k) (Forward) *//*          = 'B': H = H(k) . . . H(2) H(1) (Backward) *//*  STOREV  (input) CHARACTER*1 *//*          Specifies how the vectors which define the elementary *//*          reflectors are stored (see also Further Details): *//*          = 'C': columnwise *//*          = 'R': rowwise *//*  N       (input) INTEGER *//*          The order of the block reflector H. N >= 0. *//*  K       (input) INTEGER *//*          The order of the triangular factor T (= the number of *//*          elementary reflectors). K >= 1. *//*  V       (input/output) DOUBLE PRECISION array, dimension *//*                               (LDV,K) if STOREV = 'C' *//*                               (LDV,N) if STOREV = 'R' *//*          The matrix V. See further details. *//*  LDV     (input) INTEGER *//*          The leading dimension of the array V. *//*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. *//*  TAU     (input) DOUBLE PRECISION array, dimension (K) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i). *//*  T       (output) DOUBLE PRECISION array, dimension (LDT,K) *//*          The k by k triangular factor T of the block reflector. *//*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is *//*          lower triangular. The rest of the array is not used. *//*  LDT     (input) INTEGER *//*          The leading dimension of the array T. LDT >= K. *//*  Further Details *//*  =============== *//*  The shape of the matrix V and the storage of the vectors which define *//*  the H(i) is best illustrated by the following example with n = 5 and *//*  k = 3. The elements equal to 1 are not stored; the corresponding *//*  array elements are modified but restored on exit. The rest of the *//*  array is not used. *//*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': *//*               V = (  1       )                 V = (  1 v1 v1 v1 v1 ) *//*                   ( v1  1    )                     (     1 v2 v2 v2 ) *//*                   ( v1 v2  1 )                     (        1 v3 v3 ) *//*                   ( v1 v2 v3 ) *//*                   ( v1 v2 v3 ) *//*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': *//*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       ) *//*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    ) *//*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 ) *//*                   (     1 v3 ) *//*                   (        1 ) *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    v_dim1 = *ldv;    v_offset = 1 + v_dim1;    v -= v_offset;    --tau;    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    /* Function Body */    if (*n == 0) {	return 0;    }    if (_starpu_lsame_(direct, "F")) {	prevlastv = *n;	i__1 = *k;	for (i__ = 1; i__ <= i__1; ++i__) {	    prevlastv = max(i__,prevlastv);	    if (tau[i__] == 0.) {/*              H(i)  =  I */		i__2 = i__;		for (j = 1; j <= i__2; ++j) {		    t[j + i__ * t_dim1] = 0.;/* L10: */		}	    } else {/*              general case */		vii = v[i__ + i__ * v_dim1];		v[i__ + i__ * v_dim1] = 1.;		if (_starpu_lsame_(storev, "C")) {/*                 Skip any trailing zeros. */		    i__2 = i__ + 1;		    for (lastv = *n; lastv >= i__2; --lastv) {			if (v[lastv + i__ * v_dim1] != 0.) {			    break;			}		    }		    j = min(lastv,prevlastv);/*                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)' * V(i:j,i) */		    i__2 = j - i__ + 1;		    i__3 = i__ - 1;		    d__1 = -tau[i__];		    _starpu_dgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + v_dim1], 			     ldv, &v[i__ + i__ * v_dim1], &c__1, &c_b8, &t[			    i__ * t_dim1 + 1], &c__1);		} else {/*                 Skip any trailing zeros. */		    i__2 = i__ + 1;		    for (lastv = *n; lastv >= i__2; --lastv) {			if (v[i__ + lastv * v_dim1] != 0.) {			    break;			}		    }		    j = min(lastv,prevlastv);/*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)' */		    i__2 = i__ - 1;		    i__3 = j - i__ + 1;		    d__1 = -tau[i__];		    _starpu_dgemv_("No transpose", &i__2, &i__3, &d__1, &v[i__ * 			    v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &			    c_b8, &t[i__ * t_dim1 + 1], &c__1);		}		v[i__ + i__ * v_dim1] = vii;/*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */		i__2 = i__ - 1;		_starpu_dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[			t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);		t[i__ + i__ * t_dim1] = tau[i__];		if (i__ > 1) {		    prevlastv = max(prevlastv,lastv);		} else {		    prevlastv = lastv;		}	    }/* L20: */	}    } else {	prevlastv = 1;	for (i__ = *k; i__ >= 1; --i__) {	    if (tau[i__] == 0.) {/*              H(i)  =  I */		i__1 = *k;		for (j = i__; j <= i__1; ++j) {		    t[j + i__ * t_dim1] = 0.;/* L30: */		}	    } else {/*              general case */		if (i__ < *k) {		    if (_starpu_lsame_(storev, "C")) {			vii = v[*n - *k + i__ + i__ * v_dim1];			v[*n - *k + i__ + i__ * v_dim1] = 1.;/*                    Skip any leading zeros. */			i__1 = i__ - 1;			for (lastv = 1; lastv <= i__1; ++lastv) {			    if (v[lastv + i__ * v_dim1] != 0.) {				break;			    }			}			j = max(lastv,prevlastv);/*                    T(i+1:k,i) := *//*                            - tau(i) * V(j:n-k+i,i+1:k)' * V(j:n-k+i,i) */			i__1 = *n - *k + i__ - j + 1;			i__2 = *k - i__;			d__1 = -tau[i__];			_starpu_dgemv_("Transpose", &i__1, &i__2, &d__1, &v[j + (i__ 				+ 1) * v_dim1], ldv, &v[j + i__ * v_dim1], &				c__1, &c_b8, &t[i__ + 1 + i__ * t_dim1], &				c__1);			v[*n - *k + i__ + i__ * v_dim1] = vii;		    } else {			vii = v[i__ + (*n - *k + i__) * v_dim1];			v[i__ + (*n - *k + i__) * v_dim1] = 1.;/*                    Skip any leading zeros. */			i__1 = i__ - 1;			for (lastv = 1; lastv <= i__1; ++lastv) {			    if (v[i__ + lastv * v_dim1] != 0.) {				break;			    }			}			j = max(lastv,prevlastv);/*                    T(i+1:k,i) := *//*                            - tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)' */			i__1 = *k - i__;			i__2 = *n - *k + i__ - j + 1;			d__1 = -tau[i__];			_starpu_dgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ + 				1 + j * v_dim1], ldv, &v[i__ + j * v_dim1], 				ldv, &c_b8, &t[i__ + 1 + i__ * t_dim1], &c__1);			v[i__ + (*n - *k + i__) * v_dim1] = vii;		    }/*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */		    i__1 = *k - i__;		    _starpu_dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ 			    + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *			     t_dim1], &c__1)			    ;		    if (i__ > 1) {			prevlastv = min(prevlastv,lastv);		    } else {			prevlastv = lastv;		    }		}		t[i__ + i__ * t_dim1] = tau[i__];	    }/* L40: */	}    }    return 0;/*     End of DLARFT */} /* _starpu_dlarft_ */
 |