| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678 | /* dlaein.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dlaein_(logical *rightv, logical *noinit, integer *n, 	doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi, 	doublereal *vr, doublereal *vi, doublereal *b, integer *ldb, 	doublereal *work, doublereal *eps3, doublereal *smlnum, doublereal *	bignum, integer *info){    /* System generated locals */    integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;    doublereal d__1, d__2, d__3, d__4;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j;    doublereal w, x, y;    integer i1, i2, i3;    doublereal w1, ei, ej, xi, xr, rec;    integer its, ierr;    doublereal temp, norm, vmax;    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal scale;    extern doublereal _starpu_dasum_(integer *, doublereal *, integer *);    char trans[1];    doublereal vcrit, rootn, vnorm;    extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);    doublereal absbii, absbjj;    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dladiv_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *), _starpu_dlatrs_(	    char *, char *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *);    char normin[1];    doublereal nrmsml, growto;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAEIN uses inverse iteration to find a right or left eigenvector *//*  corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg *//*  matrix H. *//*  Arguments *//*  ========= *//*  RIGHTV   (input) LOGICAL *//*          = .TRUE. : compute right eigenvector; *//*          = .FALSE.: compute left eigenvector. *//*  NOINIT   (input) LOGICAL *//*          = .TRUE. : no initial vector supplied in (VR,VI). *//*          = .FALSE.: initial vector supplied in (VR,VI). *//*  N       (input) INTEGER *//*          The order of the matrix H.  N >= 0. *//*  H       (input) DOUBLE PRECISION array, dimension (LDH,N) *//*          The upper Hessenberg matrix H. *//*  LDH     (input) INTEGER *//*          The leading dimension of the array H.  LDH >= max(1,N). *//*  WR      (input) DOUBLE PRECISION *//*  WI      (input) DOUBLE PRECISION *//*          The real and imaginary parts of the eigenvalue of H whose *//*          corresponding right or left eigenvector is to be computed. *//*  VR      (input/output) DOUBLE PRECISION array, dimension (N) *//*  VI      (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain *//*          a real starting vector for inverse iteration using the real *//*          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI *//*          must contain the real and imaginary parts of a complex *//*          starting vector for inverse iteration using the complex *//*          eigenvalue (WR,WI); otherwise VR and VI need not be set. *//*          On exit, if WI = 0.0 (real eigenvalue), VR contains the *//*          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), *//*          VR and VI contain the real and imaginary parts of the *//*          computed complex eigenvector. The eigenvector is normalized *//*          so that the component of largest magnitude has magnitude 1; *//*          here the magnitude of a complex number (x,y) is taken to be *//*          |x| + |y|. *//*          VI is not referenced if WI = 0.0. *//*  B       (workspace) DOUBLE PRECISION array, dimension (LDB,N) *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= N+1. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension (N) *//*  EPS3    (input) DOUBLE PRECISION *//*          A small machine-dependent value which is used to perturb *//*          close eigenvalues, and to replace zero pivots. *//*  SMLNUM  (input) DOUBLE PRECISION *//*          A machine-dependent value close to the underflow threshold. *//*  BIGNUM  (input) DOUBLE PRECISION *//*          A machine-dependent value close to the overflow threshold. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          = 1:  inverse iteration did not converge; VR is set to the *//*                last iterate, and so is VI if WI.ne.0.0. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    h_dim1 = *ldh;    h_offset = 1 + h_dim1;    h__ -= h_offset;    --vr;    --vi;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --work;    /* Function Body */    *info = 0;/*     GROWTO is the threshold used in the acceptance test for an *//*     eigenvector. */    rootn = sqrt((doublereal) (*n));    growto = .1 / rootn;/* Computing MAX */    d__1 = 1., d__2 = *eps3 * rootn;    nrmsml = max(d__1,d__2) * *smlnum;/*     Form B = H - (WR,WI)*I (except that the subdiagonal elements and *//*     the imaginary parts of the diagonal elements are not stored). */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = j - 1;	for (i__ = 1; i__ <= i__2; ++i__) {	    b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];/* L10: */	}	b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;/* L20: */    }    if (*wi == 0.) {/*        Real eigenvalue. */	if (*noinit) {/*           Set initial vector. */	    i__1 = *n;	    for (i__ = 1; i__ <= i__1; ++i__) {		vr[i__] = *eps3;/* L30: */	    }	} else {/*           Scale supplied initial vector. */	    vnorm = _starpu_dnrm2_(n, &vr[1], &c__1);	    d__1 = *eps3 * rootn / max(vnorm,nrmsml);	    _starpu_dscal_(n, &d__1, &vr[1], &c__1);	}	if (*rightv) {/*           LU decomposition with partial pivoting of B, replacing zero *//*           pivots by EPS3. */	    i__1 = *n - 1;	    for (i__ = 1; i__ <= i__1; ++i__) {		ei = h__[i__ + 1 + i__ * h_dim1];		if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) < abs(ei)) {/*                 Interchange rows and eliminate. */		    x = b[i__ + i__ * b_dim1] / ei;		    b[i__ + i__ * b_dim1] = ei;		    i__2 = *n;		    for (j = i__ + 1; j <= i__2; ++j) {			temp = b[i__ + 1 + j * b_dim1];			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x * 				temp;			b[i__ + j * b_dim1] = temp;/* L40: */		    }		} else {/*                 Eliminate without interchange. */		    if (b[i__ + i__ * b_dim1] == 0.) {			b[i__ + i__ * b_dim1] = *eps3;		    }		    x = ei / b[i__ + i__ * b_dim1];		    if (x != 0.) {			i__2 = *n;			for (j = i__ + 1; j <= i__2; ++j) {			    b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]				    ;/* L50: */			}		    }		}/* L60: */	    }	    if (b[*n + *n * b_dim1] == 0.) {		b[*n + *n * b_dim1] = *eps3;	    }	    *(unsigned char *)trans = 'N';	} else {/*           UL decomposition with partial pivoting of B, replacing zero *//*           pivots by EPS3. */	    for (j = *n; j >= 2; --j) {		ej = h__[j + (j - 1) * h_dim1];		if ((d__1 = b[j + j * b_dim1], abs(d__1)) < abs(ej)) {/*                 Interchange columns and eliminate. */		    x = b[j + j * b_dim1] / ej;		    b[j + j * b_dim1] = ej;		    i__1 = j - 1;		    for (i__ = 1; i__ <= i__1; ++i__) {			temp = b[i__ + (j - 1) * b_dim1];			b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x * 				temp;			b[i__ + j * b_dim1] = temp;/* L70: */		    }		} else {/*                 Eliminate without interchange. */		    if (b[j + j * b_dim1] == 0.) {			b[j + j * b_dim1] = *eps3;		    }		    x = ej / b[j + j * b_dim1];		    if (x != 0.) {			i__1 = j - 1;			for (i__ = 1; i__ <= i__1; ++i__) {			    b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j * 				    b_dim1];/* L80: */			}		    }		}/* L90: */	    }	    if (b[b_dim1 + 1] == 0.) {		b[b_dim1 + 1] = *eps3;	    }	    *(unsigned char *)trans = 'T';	}	*(unsigned char *)normin = 'N';	i__1 = *n;	for (its = 1; its <= i__1; ++its) {/*           Solve U*x = scale*v for a right eigenvector *//*             or U'*x = scale*v for a left eigenvector, *//*           overwriting x on v. */	    _starpu_dlatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &		    vr[1], &scale, &work[1], &ierr);	    *(unsigned char *)normin = 'Y';/*           Test for sufficient growth in the norm of v. */	    vnorm = _starpu_dasum_(n, &vr[1], &c__1);	    if (vnorm >= growto * scale) {		goto L120;	    }/*           Choose new orthogonal starting vector and try again. */	    temp = *eps3 / (rootn + 1.);	    vr[1] = *eps3;	    i__2 = *n;	    for (i__ = 2; i__ <= i__2; ++i__) {		vr[i__] = temp;/* L100: */	    }	    vr[*n - its + 1] -= *eps3 * rootn;/* L110: */	}/*        Failure to find eigenvector in N iterations. */	*info = 1;L120:/*        Normalize eigenvector. */	i__ = _starpu_idamax_(n, &vr[1], &c__1);	d__2 = 1. / (d__1 = vr[i__], abs(d__1));	_starpu_dscal_(n, &d__2, &vr[1], &c__1);    } else {/*        Complex eigenvalue. */	if (*noinit) {/*           Set initial vector. */	    i__1 = *n;	    for (i__ = 1; i__ <= i__1; ++i__) {		vr[i__] = *eps3;		vi[i__] = 0.;/* L130: */	    }	} else {/*           Scale supplied initial vector. */	    d__1 = _starpu_dnrm2_(n, &vr[1], &c__1);	    d__2 = _starpu_dnrm2_(n, &vi[1], &c__1);	    norm = _starpu_dlapy2_(&d__1, &d__2);	    rec = *eps3 * rootn / max(norm,nrmsml);	    _starpu_dscal_(n, &rec, &vr[1], &c__1);	    _starpu_dscal_(n, &rec, &vi[1], &c__1);	}	if (*rightv) {/*           LU decomposition with partial pivoting of B, replacing zero *//*           pivots by EPS3. *//*           The imaginary part of the (i,j)-th element of U is stored in *//*           B(j+1,i). */	    b[b_dim1 + 2] = -(*wi);	    i__1 = *n;	    for (i__ = 2; i__ <= i__1; ++i__) {		b[i__ + 1 + b_dim1] = 0.;/* L140: */	    }	    i__1 = *n - 1;	    for (i__ = 1; i__ <= i__1; ++i__) {		absbii = _starpu_dlapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ * 			b_dim1]);		ei = h__[i__ + 1 + i__ * h_dim1];		if (absbii < abs(ei)) {/*                 Interchange rows and eliminate. */		    xr = b[i__ + i__ * b_dim1] / ei;		    xi = b[i__ + 1 + i__ * b_dim1] / ei;		    b[i__ + i__ * b_dim1] = ei;		    b[i__ + 1 + i__ * b_dim1] = 0.;		    i__2 = *n;		    for (j = i__ + 1; j <= i__2; ++j) {			temp = b[i__ + 1 + j * b_dim1];			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr * 				temp;			b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ * 				b_dim1] - xi * temp;			b[i__ + j * b_dim1] = temp;			b[j + 1 + i__ * b_dim1] = 0.;/* L150: */		    }		    b[i__ + 2 + i__ * b_dim1] = -(*wi);		    b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;		    b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;		} else {/*                 Eliminate without interchanging rows. */		    if (absbii == 0.) {			b[i__ + i__ * b_dim1] = *eps3;			b[i__ + 1 + i__ * b_dim1] = 0.;			absbii = *eps3;		    }		    ei = ei / absbii / absbii;		    xr = b[i__ + i__ * b_dim1] * ei;		    xi = -b[i__ + 1 + i__ * b_dim1] * ei;		    i__2 = *n;		    for (j = i__ + 1; j <= i__2; ++j) {			b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] - 				xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__ 				* b_dim1];			b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ * 				b_dim1] - xi * b[i__ + j * b_dim1];/* L160: */		    }		    b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;		}/*              Compute 1-norm of offdiagonal elements of i-th row. */		i__2 = *n - i__;		i__3 = *n - i__;		work[i__] = _starpu_dasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb) 			+ _starpu_dasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);/* L170: */	    }	    if (b[*n + *n * b_dim1] == 0. && b[*n + 1 + *n * b_dim1] == 0.) {		b[*n + *n * b_dim1] = *eps3;	    }	    work[*n] = 0.;	    i1 = *n;	    i2 = 1;	    i3 = -1;	} else {/*           UL decomposition with partial pivoting of conjg(B), *//*           replacing zero pivots by EPS3. *//*           The imaginary part of the (i,j)-th element of U is stored in *//*           B(j+1,i). */	    b[*n + 1 + *n * b_dim1] = *wi;	    i__1 = *n - 1;	    for (j = 1; j <= i__1; ++j) {		b[*n + 1 + j * b_dim1] = 0.;/* L180: */	    }	    for (j = *n; j >= 2; --j) {		ej = h__[j + (j - 1) * h_dim1];		absbjj = _starpu_dlapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);		if (absbjj < abs(ej)) {/*                 Interchange columns and eliminate */		    xr = b[j + j * b_dim1] / ej;		    xi = b[j + 1 + j * b_dim1] / ej;		    b[j + j * b_dim1] = ej;		    b[j + 1 + j * b_dim1] = 0.;		    i__1 = j - 1;		    for (i__ = 1; i__ <= i__1; ++i__) {			temp = b[i__ + (j - 1) * b_dim1];			b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *				 temp;			b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi * 				temp;			b[i__ + j * b_dim1] = temp;			b[j + 1 + i__ * b_dim1] = 0.;/* L190: */		    }		    b[j + 1 + (j - 1) * b_dim1] = *wi;		    b[j - 1 + (j - 1) * b_dim1] += xi * *wi;		    b[j + (j - 1) * b_dim1] -= xr * *wi;		} else {/*                 Eliminate without interchange. */		    if (absbjj == 0.) {			b[j + j * b_dim1] = *eps3;			b[j + 1 + j * b_dim1] = 0.;			absbjj = *eps3;		    }		    ej = ej / absbjj / absbjj;		    xr = b[j + j * b_dim1] * ej;		    xi = -b[j + 1 + j * b_dim1] * ej;		    i__1 = j - 1;		    for (i__ = 1; i__ <= i__1; ++i__) {			b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1] 				- xr * b[i__ + j * b_dim1] + xi * b[j + 1 + 				i__ * b_dim1];			b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] - 				xi * b[i__ + j * b_dim1];/* L200: */		    }		    b[j + (j - 1) * b_dim1] += *wi;		}/*              Compute 1-norm of offdiagonal elements of j-th column. */		i__1 = j - 1;		i__2 = j - 1;		work[j] = _starpu_dasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + _starpu_dasum_(&			i__2, &b[j + 1 + b_dim1], ldb);/* L210: */	    }	    if (b[b_dim1 + 1] == 0. && b[b_dim1 + 2] == 0.) {		b[b_dim1 + 1] = *eps3;	    }	    work[1] = 0.;	    i1 = 1;	    i2 = *n;	    i3 = 1;	}	i__1 = *n;	for (its = 1; its <= i__1; ++its) {	    scale = 1.;	    vmax = 1.;	    vcrit = *bignum;/*           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, *//*             or U'*(xr,xi) = scale*(vr,vi) for a left eigenvector, *//*           overwriting (xr,xi) on (vr,vi). */	    i__2 = i2;	    i__3 = i3;	    for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) 		    {		if (work[i__] > vcrit) {		    rec = 1. / vmax;		    _starpu_dscal_(n, &rec, &vr[1], &c__1);		    _starpu_dscal_(n, &rec, &vi[1], &c__1);		    scale *= rec;		    vmax = 1.;		    vcrit = *bignum;		}		xr = vr[i__];		xi = vi[i__];		if (*rightv) {		    i__4 = *n;		    for (j = i__ + 1; j <= i__4; ++j) {			xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__ 				* b_dim1] * vi[j];			xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__ 				* b_dim1] * vr[j];/* L220: */		    }		} else {		    i__4 = i__ - 1;		    for (j = 1; j <= i__4; ++j) {			xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j 				* b_dim1] * vi[j];			xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j 				* b_dim1] * vr[j];/* L230: */		    }		}		w = (d__1 = b[i__ + i__ * b_dim1], abs(d__1)) + (d__2 = b[i__ 			+ 1 + i__ * b_dim1], abs(d__2));		if (w > *smlnum) {		    if (w < 1.) {			w1 = abs(xr) + abs(xi);			if (w1 > w * *bignum) {			    rec = 1. / w1;			    _starpu_dscal_(n, &rec, &vr[1], &c__1);			    _starpu_dscal_(n, &rec, &vi[1], &c__1);			    xr = vr[i__];			    xi = vi[i__];			    scale *= rec;			    vmax *= rec;			}		    }/*                 Divide by diagonal element of B. */		    _starpu_dladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 + 			    i__ * b_dim1], &vr[i__], &vi[i__]);/* Computing MAX */		    d__3 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__], abs(			    d__2));		    vmax = max(d__3,vmax);		    vcrit = *bignum / vmax;		} else {		    i__4 = *n;		    for (j = 1; j <= i__4; ++j) {			vr[j] = 0.;			vi[j] = 0.;/* L240: */		    }		    vr[i__] = 1.;		    vi[i__] = 1.;		    scale = 0.;		    vmax = 1.;		    vcrit = *bignum;		}/* L250: */	    }/*           Test for sufficient growth in the norm of (VR,VI). */	    vnorm = _starpu_dasum_(n, &vr[1], &c__1) + _starpu_dasum_(n, &vi[1], &c__1);	    if (vnorm >= growto * scale) {		goto L280;	    }/*           Choose a new orthogonal starting vector and try again. */	    y = *eps3 / (rootn + 1.);	    vr[1] = *eps3;	    vi[1] = 0.;	    i__3 = *n;	    for (i__ = 2; i__ <= i__3; ++i__) {		vr[i__] = y;		vi[i__] = 0.;/* L260: */	    }	    vr[*n - its + 1] -= *eps3 * rootn;/* L270: */	}/*        Failure to find eigenvector in N iterations */	*info = 1;L280:/*        Normalize eigenvector. */	vnorm = 0.;	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MAX */	    d__3 = vnorm, d__4 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__]		    , abs(d__2));	    vnorm = max(d__3,d__4);/* L290: */	}	d__1 = 1. / vnorm;	_starpu_dscal_(n, &d__1, &vr[1], &c__1);	d__1 = 1. / vnorm;	_starpu_dscal_(n, &d__1, &vi[1], &c__1);    }    return 0;/*     End of DLAEIN */} /* _starpu_dlaein_ */
 |