| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 | /* dlaed7.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__2 = 2;static integer c__1 = 1;static doublereal c_b10 = 1.;static doublereal c_b11 = 0.;static integer c_n1 = -1;/* Subroutine */ int _starpu_dlaed7_(integer *icompq, integer *n, integer *qsiz, 	integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__, 	doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer 	*cutpnt, doublereal *qstore, integer *qptr, integer *prmptr, integer *	perm, integer *givptr, integer *givcol, doublereal *givnum, 	doublereal *work, integer *iwork, integer *info){    /* System generated locals */    integer q_dim1, q_offset, i__1, i__2;    /* Builtin functions */    integer pow_ii(integer *, integer *);    /* Local variables */    integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr;    extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    integer indxc, indxp;    extern /* Subroutine */ int _starpu_dlaed8_(integer *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *, integer *, 	    doublereal *, integer *, integer *, integer *), _starpu_dlaed9_(integer *, 	     integer *, integer *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *), _starpu_dlaeda_(integer *, integer *, integer *, 	    integer *, integer *, integer *, integer *, integer *, doublereal 	    *, doublereal *, integer *, doublereal *, doublereal *, integer *)	    ;    integer idlmda;    extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *, 	    integer *, integer *, integer *), _starpu_xerbla_(char *, integer *);    integer coltyp;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAED7 computes the updated eigensystem of a diagonal *//*  matrix after modification by a rank-one symmetric matrix. This *//*  routine is used only for the eigenproblem which requires all *//*  eigenvalues and optionally eigenvectors of a dense symmetric matrix *//*  that has been reduced to tridiagonal form.  DLAED1 handles *//*  the case in which all eigenvalues and eigenvectors of a symmetric *//*  tridiagonal matrix are desired. *//*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) *//*     where Z = Q'u, u is a vector of length N with ones in the *//*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. *//*     The eigenvectors of the original matrix are stored in Q, and the *//*     eigenvalues are in D.  The algorithm consists of three stages: *//*        The first stage consists of deflating the size of the problem *//*        when there are multiple eigenvalues or if there is a zero in *//*        the Z vector.  For each such occurence the dimension of the *//*        secular equation problem is reduced by one.  This stage is *//*        performed by the routine DLAED8. *//*        The second stage consists of calculating the updated *//*        eigenvalues. This is done by finding the roots of the secular *//*        equation via the routine DLAED4 (as called by DLAED9). *//*        This routine also calculates the eigenvectors of the current *//*        problem. *//*        The final stage consists of computing the updated eigenvectors *//*        directly using the updated eigenvalues.  The eigenvectors for *//*        the current problem are multiplied with the eigenvectors from *//*        the overall problem. *//*  Arguments *//*  ========= *//*  ICOMPQ  (input) INTEGER *//*          = 0:  Compute eigenvalues only. *//*          = 1:  Compute eigenvectors of original dense symmetric matrix *//*                also.  On entry, Q contains the orthogonal matrix used *//*                to reduce the original matrix to tridiagonal form. *//*  N      (input) INTEGER *//*         The dimension of the symmetric tridiagonal matrix.  N >= 0. *//*  QSIZ   (input) INTEGER *//*         The dimension of the orthogonal matrix used to reduce *//*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. *//*  TLVLS  (input) INTEGER *//*         The total number of merging levels in the overall divide and *//*         conquer tree. *//*  CURLVL (input) INTEGER *//*         The current level in the overall merge routine, *//*         0 <= CURLVL <= TLVLS. *//*  CURPBM (input) INTEGER *//*         The current problem in the current level in the overall *//*         merge routine (counting from upper left to lower right). *//*  D      (input/output) DOUBLE PRECISION array, dimension (N) *//*         On entry, the eigenvalues of the rank-1-perturbed matrix. *//*         On exit, the eigenvalues of the repaired matrix. *//*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) *//*         On entry, the eigenvectors of the rank-1-perturbed matrix. *//*         On exit, the eigenvectors of the repaired tridiagonal matrix. *//*  LDQ    (input) INTEGER *//*         The leading dimension of the array Q.  LDQ >= max(1,N). *//*  INDXQ  (output) INTEGER array, dimension (N) *//*         The permutation which will reintegrate the subproblem just *//*         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) *//*         will be in ascending order. *//*  RHO    (input) DOUBLE PRECISION *//*         The subdiagonal element used to create the rank-1 *//*         modification. *//*  CUTPNT (input) INTEGER *//*         Contains the location of the last eigenvalue in the leading *//*         sub-matrix.  min(1,N) <= CUTPNT <= N. *//*  QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1) *//*         Stores eigenvectors of submatrices encountered during *//*         divide and conquer, packed together. QPTR points to *//*         beginning of the submatrices. *//*  QPTR   (input/output) INTEGER array, dimension (N+2) *//*         List of indices pointing to beginning of submatrices stored *//*         in QSTORE. The submatrices are numbered starting at the *//*         bottom left of the divide and conquer tree, from left to *//*         right and bottom to top. *//*  PRMPTR (input) INTEGER array, dimension (N lg N) *//*         Contains a list of pointers which indicate where in PERM a *//*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i) *//*         indicates the size of the permutation and also the size of *//*         the full, non-deflated problem. *//*  PERM   (input) INTEGER array, dimension (N lg N) *//*         Contains the permutations (from deflation and sorting) to be *//*         applied to each eigenblock. *//*  GIVPTR (input) INTEGER array, dimension (N lg N) *//*         Contains a list of pointers which indicate where in GIVCOL a *//*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i) *//*         indicates the number of Givens rotations. *//*  GIVCOL (input) INTEGER array, dimension (2, N lg N) *//*         Each pair of numbers indicates a pair of columns to take place *//*         in a Givens rotation. *//*  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) *//*         Each number indicates the S value to be used in the *//*         corresponding Givens rotation. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N) *//*  IWORK  (workspace) INTEGER array, dimension (4*N) *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an eigenvalue did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --indxq;    --qstore;    --qptr;    --prmptr;    --perm;    --givptr;    givcol -= 3;    givnum -= 3;    --work;    --iwork;    /* Function Body */    *info = 0;    if (*icompq < 0 || *icompq > 1) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*icompq == 1 && *qsiz < *n) {	*info = -4;    } else if (*ldq < max(1,*n)) {	*info = -9;    } else if (min(1,*n) > *cutpnt || *n < *cutpnt) {	*info = -12;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLAED7", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     The following values are for bookkeeping purposes only.  They are *//*     integer pointers which indicate the portion of the workspace *//*     used by a particular array in DLAED8 and DLAED9. */    if (*icompq == 1) {	ldq2 = *qsiz;    } else {	ldq2 = *n;    }    iz = 1;    idlmda = iz + *n;    iw = idlmda + *n;    iq2 = iw + *n;    is = iq2 + *n * ldq2;    indx = 1;    indxc = indx + *n;    coltyp = indxc + *n;    indxp = coltyp + *n;/*     Form the z-vector which consists of the last row of Q_1 and the *//*     first row of Q_2. */    ptr = pow_ii(&c__2, tlvls) + 1;    i__1 = *curlvl - 1;    for (i__ = 1; i__ <= i__1; ++i__) {	i__2 = *tlvls - i__;	ptr += pow_ii(&c__2, &i__2);/* L10: */    }    curr = ptr + *curpbm;    _starpu_dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &	    givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz 	    + *n], info);/*     When solving the final problem, we no longer need the stored data, *//*     so we will overwrite the data from this level onto the previously *//*     used storage space. */    if (*curlvl == *tlvls) {	qptr[curr] = 1;	prmptr[curr] = 1;	givptr[curr] = 1;    }/*     Sort and Deflate eigenvalues. */    _starpu_dlaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, 	    cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], &	    perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1)	     + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[	    indx], info);    prmptr[curr + 1] = prmptr[curr] + *n;    givptr[curr + 1] += givptr[curr];/*     Solve Secular Equation. */    if (k != 0) {	_starpu_dlaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], 		&work[iw], &qstore[qptr[curr]], &k, info);	if (*info != 0) {	    goto L30;	}	if (*icompq == 1) {	    _starpu_dgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[		    qptr[curr]], &k, &c_b11, &q[q_offset], ldq);	}/* Computing 2nd power */	i__1 = k;	qptr[curr + 1] = qptr[curr] + i__1 * i__1;/*     Prepare the INDXQ sorting permutation. */	n1 = k;	n2 = *n - k;	_starpu_dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);    } else {	qptr[curr + 1] = qptr[curr];	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    indxq[i__] = i__;/* L20: */	}    }L30:    return 0;/*     End of DLAED7 */} /* _starpu_dlaed7_ */
 |