| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694 | /* dgelsd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__6 = 6;static integer c_n1 = -1;static integer c__9 = 9;static integer c__0 = 0;static integer c__1 = 1;static doublereal c_b82 = 0.;/* Subroutine */ int _starpu_dgelsd_(integer *m, integer *n, integer *nrhs, 	doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *	s, doublereal *rcond, integer *rank, doublereal *work, integer *lwork, 	 integer *iwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;    /* Builtin functions */    double log(doublereal);    /* Local variables */    integer ie, il, mm;    doublereal eps, anrm, bnrm;    integer itau, nlvl, iascl, ibscl;    doublereal sfmin;    integer minmn, maxmn, itaup, itauq, mnthr, nwork;    extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *), _starpu_dgebrd_(	    integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     integer *);    extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern /* Subroutine */ int _starpu_dgelqf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), 	    _starpu_dlalsd_(char *, integer *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, integer *), _starpu_dlascl_(char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    integer *, doublereal *, integer *, integer *), _starpu_dgeqrf_(	    integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *, integer *), _starpu_dlacpy_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *), _starpu_dlaset_(char *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, 	    integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    doublereal bignum;    extern /* Subroutine */ int _starpu_dormbr_(char *, char *, char *, integer *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, integer *);    integer wlalsd;    extern /* Subroutine */ int _starpu_dormlq_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    integer ldwork;    extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    integer minwrk, maxwrk;    doublereal smlnum;    logical lquery;    integer smlsiz;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGELSD computes the minimum-norm solution to a real linear least *//*  squares problem: *//*      minimize 2-norm(| b - A*x |) *//*  using the singular value decomposition (SVD) of A. A is an M-by-N *//*  matrix which may be rank-deficient. *//*  Several right hand side vectors b and solution vectors x can be *//*  handled in a single call; they are stored as the columns of the *//*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution *//*  matrix X. *//*  The problem is solved in three steps: *//*  (1) Reduce the coefficient matrix A to bidiagonal form with *//*      Householder transformations, reducing the original problem *//*      into a "bidiagonal least squares problem" (BLS) *//*  (2) Solve the BLS using a divide and conquer approach. *//*  (3) Apply back all the Householder tranformations to solve *//*      the original least squares problem. *//*  The effective rank of A is determined by treating as zero those *//*  singular values which are less than RCOND times the largest singular *//*  value. *//*  The divide and conquer algorithm makes very mild assumptions about *//*  floating point arithmetic. It will work on machines with a guard *//*  digit in add/subtract, or on those binary machines without guard *//*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or *//*  Cray-2. It could conceivably fail on hexadecimal or decimal machines *//*  without guard digits, but we know of none. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of A. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of A. N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrices B and X. NRHS >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, A has been destroyed. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the M-by-NRHS right hand side matrix B. *//*          On exit, B is overwritten by the N-by-NRHS solution *//*          matrix X.  If m >= n and RANK = n, the residual *//*          sum-of-squares for the solution in the i-th column is given *//*          by the sum of squares of elements n+1:m in that column. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1,max(M,N)). *//*  S       (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The singular values of A in decreasing order. *//*          The condition number of A in the 2-norm = S(1)/S(min(m,n)). *//*  RCOND   (input) DOUBLE PRECISION *//*          RCOND is used to determine the effective rank of A. *//*          Singular values S(i) <= RCOND*S(1) are treated as zero. *//*          If RCOND < 0, machine precision is used instead. *//*  RANK    (output) INTEGER *//*          The effective rank of A, i.e., the number of singular values *//*          which are greater than RCOND*S(1). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK must be at least 1. *//*          The exact minimum amount of workspace needed depends on M, *//*          N and NRHS. As long as LWORK is at least *//*              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2, *//*          if M is greater than or equal to N or *//*              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2, *//*          if M is less than N, the code will execute correctly. *//*          SMLSIZ is returned by ILAENV and is equal to the maximum *//*          size of the subproblems at the bottom of the computation *//*          tree (usually about 25), and *//*             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) *//*          For good performance, LWORK should generally be larger. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK)) *//*          LIWORK >= 3 * MINMN * NLVL + 11 * MINMN, *//*          where MINMN = MIN( M,N ). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  the algorithm for computing the SVD failed to converge; *//*                if INFO = i, i off-diagonal elements of an intermediate *//*                bidiagonal form did not converge to zero. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Ren-Cang Li, Computer Science Division, University of *//*       California at Berkeley, USA *//*     Osni Marques, LBNL/NERSC, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --s;    --work;    --iwork;    /* Function Body */    *info = 0;    minmn = min(*m,*n);    maxmn = max(*m,*n);    mnthr = _starpu_ilaenv_(&c__6, "DGELSD", " ", m, n, nrhs, &c_n1);    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*nrhs < 0) {	*info = -3;    } else if (*lda < max(1,*m)) {	*info = -5;    } else if (*ldb < max(1,maxmn)) {	*info = -7;    }    smlsiz = _starpu_ilaenv_(&c__9, "DGELSD", " ", &c__0, &c__0, &c__0, &c__0);/*     Compute workspace. *//*     (Note: Comments in the code beginning "Workspace:" describe the *//*     minimal amount of workspace needed at that point in the code, *//*     as well as the preferred amount for good performance. *//*     NB refers to the optimal block size for the immediately *//*     following subroutine, as returned by ILAENV.) */    minwrk = 1;    minmn = max(1,minmn);/* Computing MAX */    i__1 = (integer) (log((doublereal) minmn / (doublereal) (smlsiz + 1)) / 	    log(2.)) + 1;    nlvl = max(i__1,0);    if (*info == 0) {	maxwrk = 0;	mm = *m;	if (*m >= *n && *m >= mnthr) {/*           Path 1a - overdetermined, with many more rows than columns. */	    mm = *n;/* Computing MAX */	    i__1 = maxwrk, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, 		    n, &c_n1, &c_n1);	    maxwrk = max(i__1,i__2);/* Computing MAX */	    i__1 = maxwrk, i__2 = *n + *nrhs * _starpu_ilaenv_(&c__1, "DORMQR", "LT", 		    m, nrhs, n, &c_n1);	    maxwrk = max(i__1,i__2);	}	if (*m >= *n) {/*           Path 1 - overdetermined or exactly determined. *//* Computing MAX */	    i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * _starpu_ilaenv_(&c__1, "DGEBRD", " ", &mm, n, &c_n1, &c_n1);	    maxwrk = max(i__1,i__2);/* Computing MAX */	    i__1 = maxwrk, i__2 = *n * 3 + *nrhs * _starpu_ilaenv_(&c__1, "DORMBR", 		    "QLT", &mm, nrhs, n, &c_n1);	    maxwrk = max(i__1,i__2);/* Computing MAX */	    i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * _starpu_ilaenv_(&c__1, "DORMBR", 		     "PLN", n, nrhs, n, &c_n1);	    maxwrk = max(i__1,i__2);/* Computing 2nd power */	    i__1 = smlsiz + 1;	    wlalsd = *n * 9 + (*n << 1) * smlsiz + (*n << 3) * nlvl + *n * *		    nrhs + i__1 * i__1;/* Computing MAX */	    i__1 = maxwrk, i__2 = *n * 3 + wlalsd;	    maxwrk = max(i__1,i__2);/* Computing MAX */	    i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = max(i__1,i__2), 		    i__2 = *n * 3 + wlalsd;	    minwrk = max(i__1,i__2);	}	if (*n > *m) {/* Computing 2nd power */	    i__1 = smlsiz + 1;	    wlalsd = *m * 9 + (*m << 1) * smlsiz + (*m << 3) * nlvl + *m * *		    nrhs + i__1 * i__1;	    if (*n >= mnthr) {/*              Path 2a - underdetermined, with many more columns *//*              than rows. */		maxwrk = *m + *m * _starpu_ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, 			&c_n1);/* Computing MAX */		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * 			_starpu_ilaenv_(&c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1);		maxwrk = max(i__1,i__2);/* Computing MAX */		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * _starpu_ilaenv_(&			c__1, "DORMBR", "QLT", m, nrhs, m, &c_n1);		maxwrk = max(i__1,i__2);/* Computing MAX */		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * 			_starpu_ilaenv_(&c__1, "DORMBR", "PLN", m, nrhs, m, &c_n1);		maxwrk = max(i__1,i__2);		if (*nrhs > 1) {/* Computing MAX */		    i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;		    maxwrk = max(i__1,i__2);		} else {/* Computing MAX */		    i__1 = maxwrk, i__2 = *m * *m + (*m << 1);		    maxwrk = max(i__1,i__2);		}/* Computing MAX */		i__1 = maxwrk, i__2 = *m + *nrhs * _starpu_ilaenv_(&c__1, "DORMLQ", 			"LT", n, nrhs, m, &c_n1);		maxwrk = max(i__1,i__2);/* Computing MAX */		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + wlalsd;		maxwrk = max(i__1,i__2);/*     XXX: Ensure the Path 2a case below is triggered.  The workspace *//*     calculation should use queries for all routines eventually. *//* Computing MAX *//* Computing MAX */		i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 =			 max(i__3,*nrhs), i__4 = *n - *m * 3;		i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + max(i__3,i__4);		maxwrk = max(i__1,i__2);	    } else {/*              Path 2 - remaining underdetermined cases. */		maxwrk = *m * 3 + (*n + *m) * _starpu_ilaenv_(&c__1, "DGEBRD", " ", m, 			 n, &c_n1, &c_n1);/* Computing MAX */		i__1 = maxwrk, i__2 = *m * 3 + *nrhs * _starpu_ilaenv_(&c__1, "DORMBR", "QLT", m, nrhs, n, &c_n1);		maxwrk = max(i__1,i__2);/* Computing MAX */		i__1 = maxwrk, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR", 			"PLN", n, nrhs, m, &c_n1);		maxwrk = max(i__1,i__2);/* Computing MAX */		i__1 = maxwrk, i__2 = *m * 3 + wlalsd;		maxwrk = max(i__1,i__2);	    }/* Computing MAX */	    i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = max(i__1,i__2), 		    i__2 = *m * 3 + wlalsd;	    minwrk = max(i__1,i__2);	}	minwrk = min(minwrk,maxwrk);	work[1] = (doublereal) maxwrk;	if (*lwork < minwrk && ! lquery) {	    *info = -12;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGELSD", &i__1);	return 0;    } else if (lquery) {	goto L10;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0) {	*rank = 0;	return 0;    }/*     Get machine parameters. */    eps = _starpu_dlamch_("P");    sfmin = _starpu_dlamch_("S");    smlnum = sfmin / eps;    bignum = 1. / smlnum;    _starpu_dlabad_(&smlnum, &bignum);/*     Scale A if max entry outside range [SMLNUM,BIGNUM]. */    anrm = _starpu_dlange_("M", m, n, &a[a_offset], lda, &work[1]);    iascl = 0;    if (anrm > 0. && anrm < smlnum) {/*        Scale matrix norm up to SMLNUM. */	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 		info);	iascl = 1;    } else if (anrm > bignum) {/*        Scale matrix norm down to BIGNUM. */	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 		info);	iascl = 2;    } else if (anrm == 0.) {/*        Matrix all zero. Return zero solution. */	i__1 = max(*m,*n);	_starpu_dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[b_offset], ldb);	_starpu_dlaset_("F", &minmn, &c__1, &c_b82, &c_b82, &s[1], &c__1);	*rank = 0;	goto L10;    }/*     Scale B if max entry outside range [SMLNUM,BIGNUM]. */    bnrm = _starpu_dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);    ibscl = 0;    if (bnrm > 0. && bnrm < smlnum) {/*        Scale matrix norm up to SMLNUM. */	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, 		 info);	ibscl = 1;    } else if (bnrm > bignum) {/*        Scale matrix norm down to BIGNUM. */	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, 		 info);	ibscl = 2;    }/*     If M < N make sure certain entries of B are zero. */    if (*m < *n) {	i__1 = *n - *m;	_starpu_dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[*m + 1 + b_dim1], ldb);    }/*     Overdetermined case. */    if (*m >= *n) {/*        Path 1 - overdetermined or exactly determined. */	mm = *m;	if (*m >= mnthr) {/*           Path 1a - overdetermined, with many more rows than columns. */	    mm = *n;	    itau = 1;	    nwork = itau + *n;/*           Compute A=Q*R. *//*           (Workspace: need 2*N, prefer N+N*NB) */	    i__1 = *lwork - nwork + 1;	    _starpu_dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, 		     info);/*           Multiply B by transpose(Q). *//*           (Workspace: need N+NRHS, prefer N+NRHS*NB) */	    i__1 = *lwork - nwork + 1;	    _starpu_dormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[		    b_offset], ldb, &work[nwork], &i__1, info);/*           Zero out below R. */	    if (*n > 1) {		i__1 = *n - 1;		i__2 = *n - 1;		_starpu_dlaset_("L", &i__1, &i__2, &c_b82, &c_b82, &a[a_dim1 + 2], 			lda);	    }	}	ie = 1;	itauq = ie + *n;	itaup = itauq + *n;	nwork = itaup + *n;/*        Bidiagonalize R in A. *//*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */	i__1 = *lwork - nwork + 1;	_starpu_dgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &		work[itaup], &work[nwork], &i__1, info);/*        Multiply B by transpose of left bidiagonalizing vectors of R. *//*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */	i__1 = *lwork - nwork + 1;	_starpu_dormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], 		&b[b_offset], ldb, &work[nwork], &i__1, info);/*        Solve the bidiagonal least squares problem. */	_starpu_dlalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb, 		rcond, rank, &work[nwork], &iwork[1], info);	if (*info != 0) {	    goto L10;	}/*        Multiply B by right bidiagonalizing vectors of R. */	i__1 = *lwork - nwork + 1;	_starpu_dormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &		b[b_offset], ldb, &work[nwork], &i__1, info);    } else /* if(complicated condition) */ {/* Computing MAX */	i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max(		i__1,*nrhs), i__2 = *n - *m * 3, i__1 = max(i__1,i__2);	if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,wlalsd)) {/*        Path 2a - underdetermined, with many more columns than rows *//*        and sufficient workspace for an efficient algorithm. */	    ldwork = *m;/* Computing MAX *//* Computing MAX */	    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = 		    max(i__3,*nrhs), i__4 = *n - *m * 3;	    i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda + 		    *m + *m * *nrhs, i__1 = max(i__1,i__2), i__2 = (*m << 2) 		    + *m * *lda + wlalsd;	    if (*lwork >= max(i__1,i__2)) {		ldwork = *lda;	    }	    itau = 1;	    nwork = *m + 1;/*        Compute A=L*Q. *//*        (Workspace: need 2*M, prefer M+M*NB) */	    i__1 = *lwork - nwork + 1;	    _starpu_dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, 		     info);	    il = nwork;/*        Copy L to WORK(IL), zeroing out above its diagonal. */	    _starpu_dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);	    i__1 = *m - 1;	    i__2 = *m - 1;	    _starpu_dlaset_("U", &i__1, &i__2, &c_b82, &c_b82, &work[il + ldwork], &		    ldwork);	    ie = il + ldwork * *m;	    itauq = ie + *m;	    itaup = itauq + *m;	    nwork = itaup + *m;/*        Bidiagonalize L in WORK(IL). *//*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */	    i__1 = *lwork - nwork + 1;	    _starpu_dgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq], 		    &work[itaup], &work[nwork], &i__1, info);/*        Multiply B by transpose of left bidiagonalizing vectors of L. *//*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */	    i__1 = *lwork - nwork + 1;	    _starpu_dormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[		    itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);/*        Solve the bidiagonal least squares problem. */	    _starpu_dlalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], 		    ldb, rcond, rank, &work[nwork], &iwork[1], info);	    if (*info != 0) {		goto L10;	    }/*        Multiply B by right bidiagonalizing vectors of L. */	    i__1 = *lwork - nwork + 1;	    _starpu_dormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[		    itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);/*        Zero out below first M rows of B. */	    i__1 = *n - *m;	    _starpu_dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[*m + 1 + b_dim1], 		    ldb);	    nwork = itau + *m;/*        Multiply transpose(Q) by B. *//*        (Workspace: need M+NRHS, prefer M+NRHS*NB) */	    i__1 = *lwork - nwork + 1;	    _starpu_dormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[		    b_offset], ldb, &work[nwork], &i__1, info);	} else {/*        Path 2 - remaining underdetermined cases. */	    ie = 1;	    itauq = ie + *m;	    itaup = itauq + *m;	    nwork = itaup + *m;/*        Bidiagonalize A. *//*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */	    i__1 = *lwork - nwork + 1;	    _starpu_dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &		    work[itaup], &work[nwork], &i__1, info);/*        Multiply B by transpose of left bidiagonalizing vectors. *//*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */	    i__1 = *lwork - nwork + 1;	    _starpu_dormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);/*        Solve the bidiagonal least squares problem. */	    _starpu_dlalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], 		    ldb, rcond, rank, &work[nwork], &iwork[1], info);	    if (*info != 0) {		goto L10;	    }/*        Multiply B by right bidiagonalizing vectors of A. */	    i__1 = *lwork - nwork + 1;	    _starpu_dormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);	}    }/*     Undo scaling. */    if (iascl == 1) {	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, 		 info);	_starpu_dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &		minmn, info);    } else if (iascl == 2) {	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, 		 info);	_starpu_dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &		minmn, info);    }    if (ibscl == 1) {	_starpu_dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, 		 info);    } else if (ibscl == 2) {	_starpu_dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, 		 info);    }L10:    work[1] = (doublereal) maxwrk;    return 0;/*     End of DGELSD */} /* _starpu_dgelsd_ */
 |