starpu.texi 160 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. The following step requires the availability of @code{autoconf} and
  195. @code{automake} to generate the @code{./configure} script. This is
  196. done by calling @code{./autogen.sh}. The required version for
  197. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * Insert Task Utility::
  338. * More examples:: More examples shipped with StarPU
  339. @end menu
  340. @node Compiling and linking options
  341. @section Compiling and linking options
  342. Let's suppose StarPU has been installed in the directory
  343. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  344. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  345. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  346. libraries at runtime.
  347. @example
  348. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  349. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  350. @end example
  351. The Makefile could for instance contain the following lines to define which
  352. options must be given to the compiler and to the linker:
  353. @cartouche
  354. @example
  355. CFLAGS += $$(pkg-config --cflags libstarpu)
  356. LDFLAGS += $$(pkg-config --libs libstarpu)
  357. @end example
  358. @end cartouche
  359. @node Hello World
  360. @section Hello World
  361. @menu
  362. * Required Headers::
  363. * Defining a Codelet::
  364. * Submitting a Task::
  365. * Execution of Hello World::
  366. @end menu
  367. In this section, we show how to implement a simple program that submits a task to StarPU.
  368. @node Required Headers
  369. @subsection Required Headers
  370. The @code{starpu.h} header should be included in any code using StarPU.
  371. @cartouche
  372. @smallexample
  373. #include <starpu.h>
  374. @end smallexample
  375. @end cartouche
  376. @node Defining a Codelet
  377. @subsection Defining a Codelet
  378. @cartouche
  379. @smallexample
  380. struct params @{
  381. int i;
  382. float f;
  383. @};
  384. void cpu_func(void *buffers[], void *cl_arg)
  385. @{
  386. struct params *params = cl_arg;
  387. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  388. @}
  389. starpu_codelet cl =
  390. @{
  391. .where = STARPU_CPU,
  392. .cpu_func = cpu_func,
  393. .nbuffers = 0
  394. @};
  395. @end smallexample
  396. @end cartouche
  397. A codelet is a structure that represents a computational kernel. Such a codelet
  398. may contain an implementation of the same kernel on different architectures
  399. (e.g. CUDA, Cell's SPU, x86, ...).
  400. The @code{nbuffers} field specifies the number of data buffers that are
  401. manipulated by the codelet: here the codelet does not access or modify any data
  402. that is controlled by our data management library. Note that the argument
  403. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  404. structure) does not count as a buffer since it is not managed by our data
  405. management library, but just contain trivial parameters.
  406. @c TODO need a crossref to the proper description of "where" see bla for more ...
  407. We create a codelet which may only be executed on the CPUs. The @code{where}
  408. field is a bitmask that defines where the codelet may be executed. Here, the
  409. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  410. (@pxref{Codelets and Tasks} for more details on this field).
  411. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  412. which @emph{must} have the following prototype:
  413. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  414. In this example, we can ignore the first argument of this function which gives a
  415. description of the input and output buffers (e.g. the size and the location of
  416. the matrices) since there is none.
  417. The second argument is a pointer to a buffer passed as an
  418. argument to the codelet by the means of the @code{cl_arg} field of the
  419. @code{starpu_task} structure.
  420. @c TODO rewrite so that it is a little clearer ?
  421. Be aware that this may be a pointer to a
  422. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  423. if the codelet modifies this buffer, there is no guarantee that the initial
  424. buffer will be modified as well: this for instance implies that the buffer
  425. cannot be used as a synchronization medium. If synchronization is needed, data
  426. has to be registered to StarPU, see @ref{Scaling a Vector}.
  427. @node Submitting a Task
  428. @subsection Submitting a Task
  429. @cartouche
  430. @smallexample
  431. void callback_func(void *callback_arg)
  432. @{
  433. printf("Callback function (arg %x)\n", callback_arg);
  434. @}
  435. int main(int argc, char **argv)
  436. @{
  437. /* @b{initialize StarPU} */
  438. starpu_init(NULL);
  439. struct starpu_task *task = starpu_task_create();
  440. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  441. struct params params = @{ 1, 2.0f @};
  442. task->cl_arg = &params;
  443. task->cl_arg_size = sizeof(params);
  444. task->callback_func = callback_func;
  445. task->callback_arg = 0x42;
  446. /* @b{starpu_task_submit will be a blocking call} */
  447. task->synchronous = 1;
  448. /* @b{submit the task to StarPU} */
  449. starpu_task_submit(task);
  450. /* @b{terminate StarPU} */
  451. starpu_shutdown();
  452. return 0;
  453. @}
  454. @end smallexample
  455. @end cartouche
  456. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  457. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  458. be submitted after the termination of StarPU by a call to
  459. @code{starpu_shutdown}.
  460. In the example above, a task structure is allocated by a call to
  461. @code{starpu_task_create}. This function only allocates and fills the
  462. corresponding structure with the default settings (@pxref{starpu_task_create}),
  463. but it does not submit the task to StarPU.
  464. @c not really clear ;)
  465. The @code{cl} field is a pointer to the codelet which the task will
  466. execute: in other words, the codelet structure describes which computational
  467. kernel should be offloaded on the different architectures, and the task
  468. structure is a wrapper containing a codelet and the piece of data on which the
  469. codelet should operate.
  470. The optional @code{cl_arg} field is a pointer to a buffer (of size
  471. @code{cl_arg_size}) with some parameters for the kernel
  472. described by the codelet. For instance, if a codelet implements a computational
  473. kernel that multiplies its input vector by a constant, the constant could be
  474. specified by the means of this buffer, instead of registering it as a StarPU
  475. data.
  476. Once a task has been executed, an optional callback function is be called.
  477. While the computational kernel could be offloaded on various architectures, the
  478. callback function is always executed on a CPU. The @code{callback_arg}
  479. pointer is passed as an argument of the callback. The prototype of a callback
  480. function must be:
  481. @code{void (*callback_function)(void *);}
  482. If the @code{synchronous} field is non-zero, task submission will be
  483. synchronous: the @code{starpu_task_submit} function will not return until the
  484. task was executed. Note that the @code{starpu_shutdown} method does not
  485. guarantee that asynchronous tasks have been executed before it returns,
  486. @code{starpu_task_wait_for_all} can be used to that effect..
  487. @node Execution of Hello World
  488. @subsection Execution of Hello World
  489. @smallexample
  490. % make hello_world
  491. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  492. % ./hello_world
  493. Hello world (params = @{1, 2.000000@} )
  494. Callback function (arg 42)
  495. @end smallexample
  496. @node Scaling a Vector
  497. @section Manipulating Data: Scaling a Vector
  498. The previous example has shown how to submit tasks. In this section,
  499. we show how StarPU tasks can manipulate data. The full source code for
  500. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  501. @menu
  502. * Source code of Vector Scaling::
  503. * Execution of Vector Scaling::
  504. @end menu
  505. @node Source code of Vector Scaling
  506. @subsection Source code of Vector Scaling
  507. Programmers can describe the data layout of their application so that StarPU is
  508. responsible for enforcing data coherency and availability across the machine.
  509. Instead of handling complex (and non-portable) mechanisms to perform data
  510. movements, programmers only declare which piece of data is accessed and/or
  511. modified by a task, and StarPU makes sure that when a computational kernel
  512. starts somewhere (e.g. on a GPU), its data are available locally.
  513. Before submitting those tasks, the programmer first needs to declare the
  514. different pieces of data to StarPU using the @code{starpu_*_data_register}
  515. functions. To ease the development of applications for StarPU, it is possible
  516. to describe multiple types of data layout. A type of data layout is called an
  517. @b{interface}. There are different predefined interfaces available in StarPU:
  518. here we will consider the @b{vector interface}.
  519. The following lines show how to declare an array of @code{NX} elements of type
  520. @code{float} using the vector interface:
  521. @cartouche
  522. @smallexample
  523. float vector[NX];
  524. starpu_data_handle vector_handle;
  525. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  526. sizeof(vector[0]));
  527. @end smallexample
  528. @end cartouche
  529. The first argument, called the @b{data handle}, is an opaque pointer which
  530. designates the array in StarPU. This is also the structure which is used to
  531. describe which data is used by a task. The second argument is the node number
  532. where the data originally resides. Here it is 0 since the @code{vector} array is in
  533. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  534. the number of elements in the vector and the size of each element.
  535. The following shows how to construct a StarPU task that will manipulate the
  536. vector and a constant factor.
  537. @cartouche
  538. @smallexample
  539. float factor = 3.14;
  540. struct starpu_task *task = starpu_task_create();
  541. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  542. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  543. task->buffers[0].mode = STARPU_RW;
  544. task->cl_arg = &factor;
  545. task->cl_arg_size = sizeof(factor);
  546. task->synchronous = 1;
  547. starpu_task_submit(task);
  548. @end smallexample
  549. @end cartouche
  550. Since the factor is a mere constant float value parameter,
  551. it does not need a preliminary registration, and
  552. can just be passed through the @code{cl_arg} pointer like in the previous
  553. example. The vector parameter is described by its handle.
  554. There are two fields in each element of the @code{buffers} array.
  555. @code{handle} is the handle of the data, and @code{mode} specifies how the
  556. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  557. write-only and @code{STARPU_RW} for read and write access).
  558. The definition of the codelet can be written as follows:
  559. @cartouche
  560. @smallexample
  561. void scal_cpu_func(void *buffers[], void *cl_arg)
  562. @{
  563. unsigned i;
  564. float *factor = cl_arg;
  565. /* length of the vector */
  566. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  567. /* local copy of the vector pointer */
  568. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  569. for (i = 0; i < n; i++)
  570. val[i] *= *factor;
  571. @}
  572. starpu_codelet cl = @{
  573. .where = STARPU_CPU,
  574. .cpu_func = scal_cpu_func,
  575. .nbuffers = 1
  576. @};
  577. @end smallexample
  578. @end cartouche
  579. The first argument is an array that gives
  580. a description of all the buffers passed in the @code{task->buffers}@ array. The
  581. size of this array is given by the @code{nbuffers} field of the codelet
  582. structure. For the sake of genericity, this array contains pointers to the
  583. different interfaces describing each buffer. In the case of the @b{vector
  584. interface}, the location of the vector (resp. its length) is accessible in the
  585. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  586. read-write fashion, any modification will automatically affect future accesses
  587. to this vector made by other tasks.
  588. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  589. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  590. constant factor from this pointer.
  591. @node Execution of Vector Scaling
  592. @subsection Execution of Vector Scaling
  593. @smallexample
  594. % make vector_scal
  595. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  596. % ./vector_scal
  597. 0.000000 3.000000 6.000000 9.000000 12.000000
  598. @end smallexample
  599. @node Vector Scaling on an Hybrid CPU/GPU Machine
  600. @section Vector Scaling on an Hybrid CPU/GPU Machine
  601. Contrary to the previous examples, the task submitted in this example may not
  602. only be executed by the CPUs, but also by a CUDA device.
  603. @menu
  604. * Definition of the CUDA Kernel::
  605. * Definition of the OpenCL Kernel::
  606. * Definition of the Main Code::
  607. * Execution of Hybrid Vector Scaling::
  608. @end menu
  609. @node Definition of the CUDA Kernel
  610. @subsection Definition of the CUDA Kernel
  611. The CUDA implementation can be written as follows. It needs to be
  612. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  613. driver.
  614. @cartouche
  615. @smallexample
  616. #include <starpu.h>
  617. static __global__ void vector_mult_cuda(float *val, unsigned n,
  618. float factor)
  619. @{
  620. unsigned i;
  621. if (i < n)
  622. val[i] *= factor;
  623. @}
  624. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  625. @{
  626. float *factor = (float *)_args;
  627. /* length of the vector */
  628. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  629. /* local copy of the vector pointer */
  630. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  631. unsigned threads_per_block = 64;
  632. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  633. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  634. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  635. @}
  636. @end smallexample
  637. @end cartouche
  638. @node Definition of the OpenCL Kernel
  639. @subsection Definition of the OpenCL Kernel
  640. The OpenCL implementation can be written as follows. StarPU provides
  641. tools to compile a OpenCL kernel stored in a file.
  642. @cartouche
  643. @smallexample
  644. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  645. @{
  646. const int i = get_global_id(0);
  647. if (i < nx) @{
  648. val[i] *= factor;
  649. @}
  650. @}
  651. @end smallexample
  652. @end cartouche
  653. @cartouche
  654. @smallexample
  655. #include <starpu.h>
  656. @i{#include <starpu_opencl.h>}
  657. @i{extern struct starpu_opencl_program programs;}
  658. void scal_opencl_func(void *buffers[], void *_args)
  659. @{
  660. float *factor = _args;
  661. @i{ int id, devid, err;}
  662. @i{ cl_kernel kernel;}
  663. @i{ cl_command_queue queue;}
  664. @i{ cl_event event;}
  665. /* length of the vector */
  666. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  667. /* local copy of the vector pointer */
  668. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  669. @i{ id = starpu_worker_get_id();}
  670. @i{ devid = starpu_worker_get_devid(id);}
  671. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  672. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  673. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  674. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  675. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  676. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  677. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  678. @i{ @{}
  679. @i{ size_t global=1;}
  680. @i{ size_t local=1;}
  681. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  682. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  683. @i{ @}}
  684. @i{ clFinish(queue);}
  685. @i{ starpu_opencl_collect_stats(event);}
  686. @i{ clReleaseEvent(event);}
  687. @i{ starpu_opencl_release_kernel(kernel);}
  688. @}
  689. @end smallexample
  690. @end cartouche
  691. @node Definition of the Main Code
  692. @subsection Definition of the Main Code
  693. The CPU implementation is the same as in the previous section.
  694. Here is the source of the main application. You can notice the value of the
  695. field @code{where} for the codelet. We specify
  696. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  697. can be executed either on a CPU or on a CUDA or an OpenCL device.
  698. @cartouche
  699. @smallexample
  700. #include <starpu.h>
  701. #define NX 2048
  702. extern void scal_cuda_func(void *buffers[], void *_args);
  703. extern void scal_cpu_func(void *buffers[], void *_args);
  704. extern void scal_opencl_func(void *buffers[], void *_args);
  705. /* @b{Definition of the codelet} */
  706. static starpu_codelet cl = @{
  707. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  708. /* @b{on a CUDA device, or on an OpenCL device} */
  709. .cuda_func = scal_cuda_func;
  710. .cpu_func = scal_cpu_func;
  711. .opencl_func = scal_opencl_func;
  712. .nbuffers = 1;
  713. @}
  714. #ifdef STARPU_USE_OPENCL
  715. /* @b{The compiled version of the OpenCL program} */
  716. struct starpu_opencl_program programs;
  717. #endif
  718. int main(int argc, char **argv)
  719. @{
  720. float *vector;
  721. int i, ret;
  722. float factor=3.0;
  723. struct starpu_task *task;
  724. starpu_data_handle vector_handle;
  725. starpu_init(NULL); /* @b{Initialising StarPU} */
  726. #ifdef STARPU_USE_OPENCL
  727. starpu_opencl_load_opencl_from_file(
  728. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  729. #endif
  730. vector = malloc(NX*sizeof(vector[0]));
  731. assert(vector);
  732. for(i=0 ; i<NX ; i++) vector[i] = i;
  733. @end smallexample
  734. @end cartouche
  735. @cartouche
  736. @smallexample
  737. /* @b{Registering data within StarPU} */
  738. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  739. NX, sizeof(vector[0]));
  740. /* @b{Definition of the task} */
  741. task = starpu_task_create();
  742. task->cl = &cl;
  743. task->buffers[0].handle = vector_handle;
  744. task->buffers[0].mode = STARPU_RW;
  745. task->cl_arg = &factor;
  746. task->cl_arg_size = sizeof(factor);
  747. @end smallexample
  748. @end cartouche
  749. @cartouche
  750. @smallexample
  751. /* @b{Submitting the task} */
  752. ret = starpu_task_submit(task);
  753. if (ret == -ENODEV) @{
  754. fprintf(stderr, "No worker may execute this task\n");
  755. return 1;
  756. @}
  757. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  758. /* @b{Waiting for its termination} */
  759. starpu_task_wait_for_all();
  760. /* @b{Update the vector in RAM} */
  761. starpu_data_acquire(vector_handle, STARPU_R);
  762. @end smallexample
  763. @end cartouche
  764. @cartouche
  765. @smallexample
  766. /* @b{Access the data} */
  767. for(i=0 ; i<NX; i++) @{
  768. fprintf(stderr, "%f ", vector[i]);
  769. @}
  770. fprintf(stderr, "\n");
  771. /* @b{Release the data and shutdown StarPU} */
  772. starpu_data_release(vector_handle);
  773. starpu_shutdown();
  774. return 0;
  775. @}
  776. @end smallexample
  777. @end cartouche
  778. @node Execution of Hybrid Vector Scaling
  779. @subsection Execution of Hybrid Vector Scaling
  780. The Makefile given at the beginning of the section must be extended to
  781. give the rules to compile the CUDA source code. Note that the source
  782. file of the OpenCL kernel does not need to be compiled now, it will
  783. be compiled at run-time when calling the function
  784. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  785. @cartouche
  786. @smallexample
  787. CFLAGS += $(shell pkg-config --cflags libstarpu)
  788. LDFLAGS += $(shell pkg-config --libs libstarpu)
  789. CC = gcc
  790. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  791. %.o: %.cu
  792. nvcc $(CFLAGS) $< -c $@
  793. clean:
  794. rm -f vector_scal *.o
  795. @end smallexample
  796. @end cartouche
  797. @smallexample
  798. % make
  799. @end smallexample
  800. and to execute it, with the default configuration:
  801. @smallexample
  802. % ./vector_scal
  803. 0.000000 3.000000 6.000000 9.000000 12.000000
  804. @end smallexample
  805. or for example, by disabling CPU devices:
  806. @smallexample
  807. % STARPU_NCPUS=0 ./vector_scal
  808. 0.000000 3.000000 6.000000 9.000000 12.000000
  809. @end smallexample
  810. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  811. see @ref{Using accelerators}):
  812. @smallexample
  813. % STARPU_NCUDA=0 ./vector_scal
  814. 0.000000 3.000000 6.000000 9.000000 12.000000
  815. @end smallexample
  816. @node Task and Worker Profiling
  817. @section Task and Worker Profiling
  818. A full example showing how to use the profiling API is available in
  819. the StarPU sources in the directory @code{examples/profiling/}.
  820. @cartouche
  821. @smallexample
  822. struct starpu_task *task = starpu_task_create();
  823. task->cl = &cl;
  824. task->synchronous = 1;
  825. /* We will destroy the task structure by hand so that we can
  826. * query the profiling info before the task is destroyed. */
  827. task->destroy = 0;
  828. /* Submit and wait for completion (since synchronous was set to 1) */
  829. starpu_task_submit(task);
  830. /* The task is finished, get profiling information */
  831. struct starpu_task_profiling_info *info = task->profiling_info;
  832. /* How much time did it take before the task started ? */
  833. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  834. /* How long was the task execution ? */
  835. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  836. /* We don't need the task structure anymore */
  837. starpu_task_destroy(task);
  838. @end smallexample
  839. @end cartouche
  840. @cartouche
  841. @smallexample
  842. /* Display the occupancy of all workers during the test */
  843. int worker;
  844. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  845. @{
  846. struct starpu_worker_profiling_info worker_info;
  847. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  848. STARPU_ASSERT(!ret);
  849. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  850. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  851. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  852. float executing_ratio = 100.0*executing_time/total_time;
  853. float sleeping_ratio = 100.0*sleeping_time/total_time;
  854. char workername[128];
  855. starpu_worker_get_name(worker, workername, 128);
  856. fprintf(stderr, "Worker %s:\n", workername);
  857. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  858. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  859. executing_ratio);
  860. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  861. sleeping_ratio);
  862. @}
  863. @end smallexample
  864. @end cartouche
  865. @node Partitioning Data
  866. @section Partitioning Data
  867. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  868. @cartouche
  869. @smallexample
  870. int vector[NX];
  871. starpu_data_handle handle;
  872. /* Declare data to StarPU */
  873. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  874. /* Partition the vector in PARTS sub-vectors */
  875. starpu_filter f =
  876. @{
  877. .filter_func = starpu_block_filter_func_vector,
  878. .nchildren = PARTS,
  879. .get_nchildren = NULL,
  880. .get_child_ops = NULL
  881. @};
  882. starpu_data_partition(handle, &f);
  883. @end smallexample
  884. @end cartouche
  885. @cartouche
  886. @smallexample
  887. /* Submit a task on each sub-vector */
  888. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  889. /* Get subdata number i (there is only 1 dimension) */
  890. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  891. struct starpu_task *task = starpu_task_create();
  892. task->buffers[0].handle = sub_handle;
  893. task->buffers[0].mode = STARPU_RW;
  894. task->cl = &cl;
  895. task->synchronous = 1;
  896. task->cl_arg = &factor;
  897. task->cl_arg_size = sizeof(factor);
  898. starpu_task_submit(task);
  899. @}
  900. @end smallexample
  901. @end cartouche
  902. Partitioning can be applied several times, see
  903. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  904. @node Performance model example
  905. @section Performance model example
  906. To achieve good scheduling, StarPU scheduling policies need to be able to
  907. estimate in advance the duration of a task. This is done by giving to codelets a
  908. performance model. There are several kinds of performance models.
  909. @itemize
  910. @item
  911. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  912. see for instance
  913. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  914. @item
  915. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  916. given set of data input/output sizes, the performance will always be about the
  917. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  918. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  919. few different sets of data input/output sizes. StarPU will then keep record of
  920. the average time of previous executions on the various processing units, and use
  921. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  922. for further executions. The following is a small code example.
  923. @cartouche
  924. @smallexample
  925. static struct starpu_perfmodel_t mult_perf_model = @{
  926. .type = STARPU_HISTORY_BASED,
  927. .symbol = "mult_perf_model"
  928. @};
  929. starpu_codelet cl = @{
  930. .where = STARPU_CPU,
  931. .cpu_func = cpu_mult,
  932. .nbuffers = 3,
  933. /* for the scheduling policy to be able to use performance models */
  934. .model = &mult_perf_model
  935. @};
  936. @end smallexample
  937. @end cartouche
  938. @item
  939. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  940. type). This still assumes performance regularity, but can work with various data
  941. input sizes, by applying a*n^b+c regression over observed execution times.
  942. @end itemize
  943. The same can be done for task power consumption estimation, by setting the
  944. @code{power_model} field the same way as the @code{model} field. Note: for
  945. now, the application has to give to the power consumption performance model
  946. a different name.
  947. @node Theoretical lower bound on execution time
  948. @section Theoretical lower bound on execution time
  949. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  950. bound for the execution time of a whole set of tasks. See for
  951. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  952. call @code{starpu_bound_start}, and after complete execution, call
  953. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  954. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  955. problem corresponding to the schedule of your tasks. Run it through
  956. @code{lp_solve} or any other linear programming solver, and that will give you a
  957. lower bound for the total execution time of your tasks. If StarPU was compiled
  958. with the glpk library installed, @code{starpu_bound_compute} can be used to
  959. solve it immediately and get the optimized minimum. Its @code{integer}
  960. parameter allows to decide whether integer resolution should be computed
  961. and returned.
  962. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  963. dependencies into account. It must be understood that the linear programming
  964. problem size is quadratic with the number of tasks and thus the time to solve it
  965. will be very long, it could be minutes for just a few dozen tasks. You should
  966. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  967. problem to MPS format and then use a better solver, @code{glpsol} might be
  968. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  969. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  970. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  971. of @code{lp_solve}. For instance, we often just use
  972. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  973. the @code{-gr} option can also be quite useful.
  974. Setting @code{deps} to 0 will only take into account the actual computations
  975. on processing units. It however still properly takes into account the varying
  976. performances of kernels and processing units, which is quite more accurate than
  977. just comparing StarPU performances with the fastest of the kernels being used.
  978. The @code{prio} parameter tells StarPU whether to simulate taking into account
  979. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  980. tasks before less prioritized tasks, to check to which extend this results
  981. to a less optimal solution. This increases even more computation time.
  982. Note that for simplicity, all this however doesn't take into account data
  983. transfers, which are assumed to be completely overlapped.
  984. @node Insert Task Utility
  985. @section Insert Task Utility
  986. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  987. the creation and submission of tasks.
  988. @emph{Prototype}:
  989. @code{int starpu_insert_task(starpu_codelet *cl, ...);}
  990. The arguments following the codelets can be of the following types:
  991. @itemize
  992. @item
  993. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  994. @item
  995. @code{STARPU_VALUE} followed by a pointer to a constant value and
  996. the size of the constant;
  997. @item
  998. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  999. @item
  1000. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1001. argument to the callback function;
  1002. @item
  1003. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1004. @end itemize
  1005. A call to @code{starpu_insert_task} will create and submit the task
  1006. based on the given arguments. The list of varying arguments has to be
  1007. ended by the value @code{0}.
  1008. Parameters to be passed to the codelet implementation are defined
  1009. through the type @code{STARPU_VALUE}. The function
  1010. @code{starpu_unpack_cl_args} must be called within the codelet
  1011. implementation to retrieve them.
  1012. Here the implementation of the codelet:
  1013. @smallexample
  1014. void func_cpu(void *descr[], void *_args)
  1015. @{
  1016. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1017. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1018. int ifactor;
  1019. float ffactor;
  1020. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1021. *x0 = *x0 * ifactor;
  1022. *x1 = *x1 * ffactor;
  1023. @}
  1024. starpu_codelet mycodelet = @{
  1025. .where = STARPU_CPU,
  1026. .cpu_func = func_cpu,
  1027. .nbuffers = 2
  1028. @};
  1029. @end smallexample
  1030. And the call to the @code{starpu_insert_task} wrapper:
  1031. @smallexample
  1032. starpu_insert_task(&mycodelet,
  1033. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1034. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1035. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1036. 0);
  1037. @end smallexample
  1038. The call to @code{starpu_insert_task} is equivalent to the following
  1039. code:
  1040. @smallexample
  1041. struct starpu_task *task = starpu_task_create();
  1042. task->cl = &mycodelet;
  1043. task->buffers[0].handle = data_handles[0];
  1044. task->buffers[0].mode = STARPU_RW;
  1045. task->buffers[1].handle = data_handles[1];
  1046. task->buffers[1].mode = STARPU_RW;
  1047. char *arg_buffer;
  1048. size_t arg_buffer_size;
  1049. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1050. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1051. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1052. 0);
  1053. task->cl_arg = arg_buffer;
  1054. task->cl_arg_size = arg_buffer_size;
  1055. int ret = starpu_task_submit(task);
  1056. @end smallexample
  1057. @node More examples
  1058. @section More examples
  1059. More examples are available in the StarPU sources in the @code{examples/}
  1060. directory. Simple examples include:
  1061. @table @asis
  1062. @item @code{incrementer/}:
  1063. Trivial incrementation test.
  1064. @item @code{basic_examples/}:
  1065. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1066. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1067. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1068. interface, and an example using the variable data interface.
  1069. @item @code{matvecmult/}:
  1070. OpenCL example from NVidia, adapted to StarPU.
  1071. @item @code{axpy/}:
  1072. AXPY CUBLAS operation adapted to StarPU.
  1073. @item @code{fortran/}:
  1074. Example of Fortran bindings.
  1075. @end table
  1076. More advanced examples include:
  1077. @table @asis
  1078. @item @code{filters/}:
  1079. Examples using filters, as shown in @ref{Partitioning Data}.
  1080. @item @code{lu/}:
  1081. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1082. @item @code{cholesky/}:
  1083. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1084. @end table
  1085. @c ---------------------------------------------------------------------
  1086. @c Performance options
  1087. @c ---------------------------------------------------------------------
  1088. @node Performance optimization
  1089. @chapter How to optimize performance with StarPU
  1090. TODO: improve!
  1091. @menu
  1092. * Data management::
  1093. * Task submission::
  1094. * Task scheduling policy::
  1095. * Task distribution vs Data transfer::
  1096. * Power-based scheduling::
  1097. * Profiling::
  1098. * CUDA-specific optimizations::
  1099. @end menu
  1100. Simply encapsulating application kernels into tasks already permits to
  1101. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1102. few additional changes are needed.
  1103. @node Data management
  1104. @section Data management
  1105. By default, StarPU does not enable data prefetching, because CUDA does
  1106. not announce when too many data transfers were scheduled and can thus block
  1107. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1108. .
  1109. By default, StarPU leaves replicates of data wherever they were used, in case they
  1110. will be re-used by other tasks, thus saving the data transfer time. When some
  1111. task modifies some data, all the other replicates are invalidated, and only the
  1112. processing unit will have a valid replicate of the data. If the application knows
  1113. that this data will not be re-used by further tasks, it should advise StarPU to
  1114. immediately replicate it to a desired list of memory nodes (given through a
  1115. bitmask). This can be understood like the write-through mode of CPU caches.
  1116. @example
  1117. starpu_data_set_wt_mask(img_handle, 1<<0);
  1118. @end example
  1119. will for instance request to always transfer a replicate into the main memory (node
  1120. 0), as bit 0 of the write-through bitmask is being set.
  1121. When the application allocates data, whenever possible it should use the
  1122. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1123. OpenCL to make the allocation itself and pin the corresponding allocated
  1124. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1125. transfer to overlap with computations.
  1126. @node Task submission
  1127. @section Task submission
  1128. To let StarPU make online optimizations, tasks should be submitted
  1129. asynchronously as much as possible. Ideally, all the tasks should be
  1130. submitted, and a mere @code{starpu_task_wait_for_all} call be done to wait for
  1131. termination. StarPU will then be able to rework the whole schedule, overlap
  1132. computation with communication, manage accelerator local memory usage, etc.
  1133. @node Task scheduling policy
  1134. @section Task scheduling policy
  1135. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1136. because it provides correct load balance even if the application codelets do not
  1137. have performance models. If your application codelets have performance models,
  1138. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1139. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1140. the list of available schedulers.
  1141. Most schedulers are based on an estimation of codelet duration on each kind
  1142. of processing unit. For this to be possible, the application programmer needs
  1143. to configure a performance model for the codelets of the application (see
  1144. @ref{Performance model example} for instance). History-based performance models
  1145. use on-line calibration. StarPU will automatically calibrate codelets
  1146. which have never been calibrated yet. To force continuing calibration, use
  1147. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1148. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1149. Note: due to CUDA limitations, to be able to measure kernel duration,
  1150. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1151. disables data transfer / computation overlapping, and should thus not be used
  1152. for eventual benchmarks.
  1153. @node Task distribution vs Data transfer
  1154. @section Task distribution vs Data transfer
  1155. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1156. thus needs to find a balance between both. The target function that the
  1157. @code{dmda} scheduler of StarPU
  1158. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1159. @code{T_execution} is the estimated execution time of the codelet (usually
  1160. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1161. latter is however estimated based on bus calibration before execution start,
  1162. i.e. with an idle machine. You can force bus re-calibration by running
  1163. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1164. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1165. This is of course imprecise, but in practice, a rough estimation already gives
  1166. the good results that a precise estimation would give.
  1167. @node Power-based scheduling
  1168. @section Power-based scheduling
  1169. If the application can provide some power performance model (through
  1170. the @code{power_model} field of the codelet structure), StarPU will
  1171. take it into account when distributing tasks. The target function that
  1172. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1173. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1174. is the estimated task consumption in Joules. To tune this parameter, use
  1175. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1176. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1177. alpha and beta to zero permits to only take into account power consumption.
  1178. This is however not sufficient to correctly optimize power: the scheduler would
  1179. simply tend to run all computations on the most energy-conservative processing
  1180. unit. To account for the consumption of the whole machine (including idle
  1181. processing units), the idle power of the machine should be given by setting
  1182. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1183. be obtained from the machine power supplier.
  1184. The power actually consumed by the total execution can be displayed by setting
  1185. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1186. @node Profiling
  1187. @section Profiling
  1188. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1189. calling @code{starpu_profiling_status_set} from the source code.
  1190. Statistics on the execution can then be obtained by using @code{export
  1191. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1192. stats will include an approximation of the number of executed tasks even if
  1193. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1194. execution did happen on accelerators without penalizing performance with
  1195. the profiling overhead. More details on performance feedback are provided by the
  1196. next chapter.
  1197. @node CUDA-specific optimizations
  1198. @section CUDA-specific optimizations
  1199. Due to CUDA limitations, StarPU will have a hard time overlapping
  1200. communications and computations if the application does not use a dedicated
  1201. CUDA stream for its computations. StarPU provides one by the use of
  1202. @code{starpu_cuda_get_local_stream()}. For instance:
  1203. @example
  1204. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1205. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1206. @end example
  1207. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1208. @c ---------------------------------------------------------------------
  1209. @c Performance feedback
  1210. @c ---------------------------------------------------------------------
  1211. @node Performance feedback
  1212. @chapter Performance feedback
  1213. @menu
  1214. * On-line:: On-line performance feedback
  1215. * Off-line:: Off-line performance feedback
  1216. * Codelet performance:: Performance of codelets
  1217. @end menu
  1218. @node On-line
  1219. @section On-line performance feedback
  1220. @menu
  1221. * Enabling monitoring:: Enabling on-line performance monitoring
  1222. * Task feedback:: Per-task feedback
  1223. * Codelet feedback:: Per-codelet feedback
  1224. * Worker feedback:: Per-worker feedback
  1225. * Bus feedback:: Bus-related feedback
  1226. @end menu
  1227. @node Enabling monitoring
  1228. @subsection Enabling on-line performance monitoring
  1229. In order to enable online performance monitoring, the application can call
  1230. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1231. detect whether monitoring is already enabled or not by calling
  1232. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1233. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1234. can also be set to 1 to achieve the same effect.
  1235. Likewise, performance monitoring is stopped by calling
  1236. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1237. does not reset the performance counters so that the application may consult
  1238. them later on.
  1239. More details about the performance monitoring API are available in section
  1240. @ref{Profiling API}.
  1241. @node Task feedback
  1242. @subsection Per-task feedback
  1243. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1244. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1245. structure when a task terminates.
  1246. This structure is automatically destroyed when the task structure is destroyed,
  1247. either automatically or by calling @code{starpu_task_destroy}.
  1248. The @code{starpu_task_profiling_info} structure indicates the date when the
  1249. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1250. terminated (@code{end_time}), relative to the initialization of
  1251. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1252. that has executed the task (@code{workerid}).
  1253. These date are stored as @code{timespec} structures which the user may convert
  1254. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1255. function.
  1256. It it worth noting that the application may directly access this structure from
  1257. the callback executed at the end of the task. The @code{starpu_task} structure
  1258. associated to the callback currently being executed is indeed accessible with
  1259. the @code{starpu_get_current_task()} function.
  1260. @node Codelet feedback
  1261. @subsection Per-codelet feedback
  1262. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1263. an array of counters. The i-th entry of the array is incremented every time a
  1264. task implementing the codelet is executed on the i-th worker.
  1265. This array is not reinitialized when profiling is enabled or disabled.
  1266. @node Worker feedback
  1267. @subsection Per-worker feedback
  1268. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1269. function is a @code{starpu_worker_profiling_info} structure that gives
  1270. statistics about the specified worker. This structure specifies when StarPU
  1271. started collecting profiling information for that worker (@code{start_time}),
  1272. the duration of the profiling measurement interval (@code{total_time}), the
  1273. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1274. because there is no task to execute at all (@code{sleeping_time}), and the
  1275. number of tasks that were executed while profiling was enabled.
  1276. These values give an estimation of the proportion of time spent do real work,
  1277. and the time spent either sleeping because there are not enough executable
  1278. tasks or simply wasted in pure StarPU overhead.
  1279. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1280. information associated to a worker.
  1281. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1282. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1283. generate a graphic showing the evolution of these values during the time, for
  1284. the different workers.
  1285. @node Bus feedback
  1286. @subsection Bus-related feedback
  1287. TODO
  1288. @c how to enable/disable performance monitoring
  1289. @c what kind of information do we get ?
  1290. @node Off-line
  1291. @section Off-line performance feedback
  1292. @menu
  1293. * Generating traces:: Generating traces with FxT
  1294. * Gantt diagram:: Creating a Gantt Diagram
  1295. * DAG:: Creating a DAG with graphviz
  1296. * starpu-top:: Monitoring activity
  1297. @end menu
  1298. @node Generating traces
  1299. @subsection Generating traces with FxT
  1300. StarPU can use the FxT library (see
  1301. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1302. with a limited runtime overhead.
  1303. You can either get the FxT library from CVS (autotools are required):
  1304. @example
  1305. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1306. % ./bootstrap
  1307. @end example
  1308. If autotools are not available on your machine, or if you prefer to do so,
  1309. FxT's code is also available as a tarball:
  1310. @example
  1311. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1312. @end example
  1313. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1314. done following the standard procedure:
  1315. @example
  1316. % ./configure --prefix=$FXTDIR
  1317. % make
  1318. % make install
  1319. @end example
  1320. In order to have StarPU to generate traces, StarPU should be configured with
  1321. the @code{--with-fxt} option:
  1322. @example
  1323. $ ./configure --with-fxt=$FXTDIR
  1324. @end example
  1325. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1326. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1327. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1328. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1329. @code{/tmp/} directory by default, or by the directory specified by
  1330. the @code{STARPU_FXT_PREFIX} environment variable.
  1331. @node Gantt diagram
  1332. @subsection Creating a Gantt Diagram
  1333. When the FxT trace file @code{filename} has been generated, it is possible to
  1334. generate a trace in the Paje format by calling:
  1335. @example
  1336. % starpu_fxt_tool -i filename
  1337. @end example
  1338. This will create a @code{paje.trace} file in the current directory that can be
  1339. inspected with the ViTE trace visualizing open-source tool. More information
  1340. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1341. possible to open the @code{paje.trace} file with ViTE by using the following
  1342. command:
  1343. @example
  1344. % vite paje.trace
  1345. @end example
  1346. @node DAG
  1347. @subsection Creating a DAG with graphviz
  1348. When the FxT trace file @code{filename} has been generated, it is possible to
  1349. generate a task graph in the DOT format by calling:
  1350. @example
  1351. $ starpu_fxt_tool -i filename
  1352. @end example
  1353. This will create a @code{dag.dot} file in the current directory. This file is a
  1354. task graph described using the DOT language. It is possible to get a
  1355. graphical output of the graph by using the graphviz library:
  1356. @example
  1357. $ dot -Tpdf dag.dot -o output.pdf
  1358. @end example
  1359. @node starpu-top
  1360. @subsection Monitoring activity
  1361. When the FxT trace file @code{filename} has been generated, it is possible to
  1362. generate a activity trace by calling:
  1363. @example
  1364. $ starpu_fxt_tool -i filename
  1365. @end example
  1366. This will create an @code{activity.data} file in the current
  1367. directory. A profile of the application showing the activity of StarPU
  1368. during the execution of the program can be generated:
  1369. @example
  1370. $ starpu_top.sh activity.data
  1371. @end example
  1372. This will create a file named @code{activity.eps} in the current directory.
  1373. This picture is composed of two parts.
  1374. The first part shows the activity of the different workers. The green sections
  1375. indicate which proportion of the time was spent executed kernels on the
  1376. processing unit. The red sections indicate the proportion of time spent in
  1377. StartPU: an important overhead may indicate that the granularity may be too
  1378. low, and that bigger tasks may be appropriate to use the processing unit more
  1379. efficiently. The black sections indicate that the processing unit was blocked
  1380. because there was no task to process: this may indicate a lack of parallelism
  1381. which may be alleviated by creating more tasks when it is possible.
  1382. The second part of the @code{activity.eps} picture is a graph showing the
  1383. evolution of the number of tasks available in the system during the execution.
  1384. Ready tasks are shown in black, and tasks that are submitted but not
  1385. schedulable yet are shown in grey.
  1386. @node Codelet performance
  1387. @section Performance of codelets
  1388. The performance model of codelets can be examined by using the
  1389. @code{starpu_perfmodel_display} tool:
  1390. @example
  1391. $ starpu_perfmodel_display -l
  1392. file: <malloc_pinned.hannibal>
  1393. file: <starpu_slu_lu_model_21.hannibal>
  1394. file: <starpu_slu_lu_model_11.hannibal>
  1395. file: <starpu_slu_lu_model_22.hannibal>
  1396. file: <starpu_slu_lu_model_12.hannibal>
  1397. @end example
  1398. Here, the codelets of the lu example are available. We can examine the
  1399. performance of the 22 kernel:
  1400. @example
  1401. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1402. performance model for cpu
  1403. # hash size mean dev n
  1404. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1405. performance model for cuda_0
  1406. # hash size mean dev n
  1407. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1408. performance model for cuda_1
  1409. # hash size mean dev n
  1410. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1411. performance model for cuda_2
  1412. # hash size mean dev n
  1413. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1414. @end example
  1415. We can see that for the given size, over a sample of a few hundreds of
  1416. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1417. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1418. CPUs.
  1419. @c ---------------------------------------------------------------------
  1420. @c MPI support
  1421. @c ---------------------------------------------------------------------
  1422. @node StarPU MPI support
  1423. @chapter StarPU MPI support
  1424. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1425. @c ---------------------------------------------------------------------
  1426. @c Configuration options
  1427. @c ---------------------------------------------------------------------
  1428. @node Configuring StarPU
  1429. @chapter Configuring StarPU
  1430. @menu
  1431. * Compilation configuration::
  1432. * Execution configuration through environment variables::
  1433. @end menu
  1434. @node Compilation configuration
  1435. @section Compilation configuration
  1436. The following arguments can be given to the @code{configure} script.
  1437. @menu
  1438. * Common configuration::
  1439. * Configuring workers::
  1440. * Advanced configuration::
  1441. @end menu
  1442. @node Common configuration
  1443. @subsection Common configuration
  1444. @menu
  1445. * --enable-debug::
  1446. * --enable-fast::
  1447. * --enable-verbose::
  1448. * --enable-coverage::
  1449. @end menu
  1450. @node --enable-debug
  1451. @subsubsection @code{--enable-debug}
  1452. @table @asis
  1453. @item @emph{Description}:
  1454. Enable debugging messages.
  1455. @end table
  1456. @node --enable-fast
  1457. @subsubsection @code{--enable-fast}
  1458. @table @asis
  1459. @item @emph{Description}:
  1460. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1461. @end table
  1462. @node --enable-verbose
  1463. @subsubsection @code{--enable-verbose}
  1464. @table @asis
  1465. @item @emph{Description}:
  1466. Augment the verbosity of the debugging messages. This can be disabled
  1467. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1468. any value.
  1469. @smallexample
  1470. % STARPU_SILENT=1 ./vector_scal
  1471. @end smallexample
  1472. @end table
  1473. @node --enable-coverage
  1474. @subsubsection @code{--enable-coverage}
  1475. @table @asis
  1476. @item @emph{Description}:
  1477. Enable flags for the @code{gcov} coverage tool.
  1478. @end table
  1479. @node Configuring workers
  1480. @subsection Configuring workers
  1481. @menu
  1482. * --enable-nmaxcpus::
  1483. * --disable-cpu::
  1484. * --enable-maxcudadev::
  1485. * --disable-cuda::
  1486. * --with-cuda-dir::
  1487. * --with-cuda-include-dir::
  1488. * --with-cuda-lib-dir::
  1489. * --enable-maxopencldev::
  1490. * --disable-opencl::
  1491. * --with-opencl-dir::
  1492. * --with-opencl-include-dir::
  1493. * --with-opencl-lib-dir::
  1494. * --enable-gordon::
  1495. * --with-gordon-dir::
  1496. @end menu
  1497. @node --enable-nmaxcpus
  1498. @subsubsection @code{--enable-nmaxcpus=<number>}
  1499. @table @asis
  1500. @item @emph{Description}:
  1501. Defines the maximum number of CPU cores that StarPU will support, then
  1502. available as the @code{STARPU_NMAXCPUS} macro.
  1503. @end table
  1504. @node --disable-cpu
  1505. @subsubsection @code{--disable-cpu}
  1506. @table @asis
  1507. @item @emph{Description}:
  1508. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1509. @end table
  1510. @node --enable-maxcudadev
  1511. @subsubsection @code{--enable-maxcudadev=<number>}
  1512. @table @asis
  1513. @item @emph{Description}:
  1514. Defines the maximum number of CUDA devices that StarPU will support, then
  1515. available as the @code{STARPU_MAXCUDADEVS} macro.
  1516. @end table
  1517. @node --disable-cuda
  1518. @subsubsection @code{--disable-cuda}
  1519. @table @asis
  1520. @item @emph{Description}:
  1521. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1522. @end table
  1523. @node --with-cuda-dir
  1524. @subsubsection @code{--with-cuda-dir=<path>}
  1525. @table @asis
  1526. @item @emph{Description}:
  1527. Specify the directory where CUDA is installed. This directory should notably contain
  1528. @code{include/cuda.h}.
  1529. @end table
  1530. @node --with-cuda-include-dir
  1531. @subsubsection @code{--with-cuda-include-dir=<path>}
  1532. @table @asis
  1533. @item @emph{Description}:
  1534. Specify the directory where CUDA headers are installed. This directory should
  1535. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1536. value given to @code{--with-cuda-dir}.
  1537. @end table
  1538. @node --with-cuda-lib-dir
  1539. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1540. @table @asis
  1541. @item @emph{Description}:
  1542. Specify the directory where the CUDA library is installed. This directory should
  1543. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1544. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1545. @end table
  1546. @node --enable-maxopencldev
  1547. @subsubsection @code{--enable-maxopencldev=<number>}
  1548. @table @asis
  1549. @item @emph{Description}:
  1550. Defines the maximum number of OpenCL devices that StarPU will support, then
  1551. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1552. @end table
  1553. @node --disable-opencl
  1554. @subsubsection @code{--disable-opencl}
  1555. @table @asis
  1556. @item @emph{Description}:
  1557. Disable the use of OpenCL, even if the SDK is detected.
  1558. @end table
  1559. @node --with-opencl-dir
  1560. @subsubsection @code{--with-opencl-dir=<path>}
  1561. @table @asis
  1562. @item @emph{Description}:
  1563. Specify the location of the OpenCL SDK. This directory should notably contain
  1564. @code{include/CL/cl.h}.
  1565. @end table
  1566. @node --with-opencl-include-dir
  1567. @subsubsection @code{--with-opencl-include-dir=<path>}
  1568. @table @asis
  1569. @item @emph{Description}:
  1570. Specify the location of OpenCL headers. This directory should notably contain
  1571. @code{CL/cl.h}. This defaults to
  1572. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1573. @end table
  1574. @node --with-opencl-lib-dir
  1575. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1576. @table @asis
  1577. @item @emph{Description}:
  1578. Specify the location of the OpenCL library. This directory should notably
  1579. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1580. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1581. @end table
  1582. @node --enable-gordon
  1583. @subsubsection @code{--enable-gordon}
  1584. @table @asis
  1585. @item @emph{Description}:
  1586. Enable the use of the Gordon runtime for Cell SPUs.
  1587. @c TODO: rather default to enabled when detected
  1588. @end table
  1589. @node --with-gordon-dir
  1590. @subsubsection @code{--with-gordon-dir=<path>}
  1591. @table @asis
  1592. @item @emph{Description}:
  1593. Specify the location of the Gordon SDK.
  1594. @end table
  1595. @node Advanced configuration
  1596. @subsection Advanced configuration
  1597. @menu
  1598. * --enable-perf-debug::
  1599. * --enable-model-debug::
  1600. * --enable-stats::
  1601. * --enable-maxbuffers::
  1602. * --enable-allocation-cache::
  1603. * --enable-opengl-render::
  1604. * --enable-blas-lib::
  1605. * --with-magma::
  1606. * --with-fxt::
  1607. * --with-perf-model-dir::
  1608. * --with-mpicc::
  1609. * --with-goto-dir::
  1610. * --with-atlas-dir::
  1611. * --with-mkl-cflags::
  1612. * --with-mkl-ldflags::
  1613. @end menu
  1614. @node --enable-perf-debug
  1615. @subsubsection @code{--enable-perf-debug}
  1616. @table @asis
  1617. @item @emph{Description}:
  1618. Enable performance debugging.
  1619. @end table
  1620. @node --enable-model-debug
  1621. @subsubsection @code{--enable-model-debug}
  1622. @table @asis
  1623. @item @emph{Description}:
  1624. Enable performance model debugging.
  1625. @end table
  1626. @node --enable-stats
  1627. @subsubsection @code{--enable-stats}
  1628. @table @asis
  1629. @item @emph{Description}:
  1630. Enable statistics.
  1631. @end table
  1632. @node --enable-maxbuffers
  1633. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1634. @table @asis
  1635. @item @emph{Description}:
  1636. Define the maximum number of buffers that tasks will be able to take
  1637. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1638. @end table
  1639. @node --enable-allocation-cache
  1640. @subsubsection @code{--enable-allocation-cache}
  1641. @table @asis
  1642. @item @emph{Description}:
  1643. Enable the use of a data allocation cache to avoid the cost of it with
  1644. CUDA. Still experimental.
  1645. @end table
  1646. @node --enable-opengl-render
  1647. @subsubsection @code{--enable-opengl-render}
  1648. @table @asis
  1649. @item @emph{Description}:
  1650. Enable the use of OpenGL for the rendering of some examples.
  1651. @c TODO: rather default to enabled when detected
  1652. @end table
  1653. @node --enable-blas-lib
  1654. @subsubsection @code{--enable-blas-lib=<name>}
  1655. @table @asis
  1656. @item @emph{Description}:
  1657. Specify the blas library to be used by some of the examples. The
  1658. library has to be 'atlas' or 'goto'.
  1659. @end table
  1660. @node --with-magma
  1661. @subsubsection @code{--with-magma=<path>}
  1662. @table @asis
  1663. @item @emph{Description}:
  1664. Specify where magma is installed. This directory should notably contain
  1665. @code{include/magmablas.h}.
  1666. @end table
  1667. @node --with-fxt
  1668. @subsubsection @code{--with-fxt=<path>}
  1669. @table @asis
  1670. @item @emph{Description}:
  1671. Specify the location of FxT (for generating traces and rendering them
  1672. using ViTE). This directory should notably contain
  1673. @code{include/fxt/fxt.h}.
  1674. @c TODO add ref to other section
  1675. @end table
  1676. @node --with-perf-model-dir
  1677. @subsubsection @code{--with-perf-model-dir=<dir>}
  1678. @table @asis
  1679. @item @emph{Description}:
  1680. Specify where performance models should be stored (instead of defaulting to the
  1681. current user's home).
  1682. @end table
  1683. @node --with-mpicc
  1684. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1685. @table @asis
  1686. @item @emph{Description}:
  1687. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1688. @end table
  1689. @node --with-goto-dir
  1690. @subsubsection @code{--with-goto-dir=<dir>}
  1691. @table @asis
  1692. @item @emph{Description}:
  1693. Specify the location of GotoBLAS.
  1694. @end table
  1695. @node --with-atlas-dir
  1696. @subsubsection @code{--with-atlas-dir=<dir>}
  1697. @table @asis
  1698. @item @emph{Description}:
  1699. Specify the location of ATLAS. This directory should notably contain
  1700. @code{include/cblas.h}.
  1701. @end table
  1702. @node --with-mkl-cflags
  1703. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1704. @table @asis
  1705. @item @emph{Description}:
  1706. Specify the compilation flags for the MKL Library.
  1707. @end table
  1708. @node --with-mkl-ldflags
  1709. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1710. @table @asis
  1711. @item @emph{Description}:
  1712. Specify the linking flags for the MKL Library. Note that the
  1713. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1714. website provides a script to determine the linking flags.
  1715. @end table
  1716. @c ---------------------------------------------------------------------
  1717. @c Environment variables
  1718. @c ---------------------------------------------------------------------
  1719. @node Execution configuration through environment variables
  1720. @section Execution configuration through environment variables
  1721. @menu
  1722. * Workers:: Configuring workers
  1723. * Scheduling:: Configuring the Scheduling engine
  1724. * Misc:: Miscellaneous and debug
  1725. @end menu
  1726. Note: the values given in @code{starpu_conf} structure passed when
  1727. calling @code{starpu_init} will override the values of the environment
  1728. variables.
  1729. @node Workers
  1730. @subsection Configuring workers
  1731. @menu
  1732. * STARPU_NCPUS:: Number of CPU workers
  1733. * STARPU_NCUDA:: Number of CUDA workers
  1734. * STARPU_NOPENCL:: Number of OpenCL workers
  1735. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1736. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1737. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1738. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1739. @end menu
  1740. @node STARPU_NCPUS
  1741. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1742. @table @asis
  1743. @item @emph{Description}:
  1744. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1745. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1746. the accelerators.
  1747. @end table
  1748. @node STARPU_NCUDA
  1749. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1750. @table @asis
  1751. @item @emph{Description}:
  1752. Specify the number of CUDA devices that StarPU can use. If
  1753. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1754. possible to select which CUDA devices should be used by the means of the
  1755. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1756. create as many CUDA workers as there are CUDA devices.
  1757. @end table
  1758. @node STARPU_NOPENCL
  1759. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1760. @table @asis
  1761. @item @emph{Description}:
  1762. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1763. @end table
  1764. @node STARPU_NGORDON
  1765. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1766. @table @asis
  1767. @item @emph{Description}:
  1768. Specify the number of SPUs that StarPU can use.
  1769. @end table
  1770. @node STARPU_WORKERS_CPUID
  1771. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1772. @table @asis
  1773. @item @emph{Description}:
  1774. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1775. specifies on which logical CPU the different workers should be
  1776. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1777. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1778. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1779. determined by the OS, or provided by the @code{hwloc} library in case it is
  1780. available.
  1781. Note that the first workers correspond to the CUDA workers, then come the
  1782. OpenCL and the SPU, and finally the CPU workers. For example if
  1783. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1784. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1785. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1786. the logical CPUs #1 and #3 will be used by the CPU workers.
  1787. If the number of workers is larger than the array given in
  1788. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1789. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1790. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1791. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1792. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1793. @end table
  1794. @node STARPU_WORKERS_CUDAID
  1795. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1796. @table @asis
  1797. @item @emph{Description}:
  1798. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1799. possible to select which CUDA devices should be used by StarPU. On a machine
  1800. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1801. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1802. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1803. the one reported by CUDA).
  1804. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1805. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1806. @end table
  1807. @node STARPU_WORKERS_OPENCLID
  1808. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1809. @table @asis
  1810. @item @emph{Description}:
  1811. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1812. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1813. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1814. @end table
  1815. @node Scheduling
  1816. @subsection Configuring the Scheduling engine
  1817. @menu
  1818. * STARPU_SCHED:: Scheduling policy
  1819. * STARPU_CALIBRATE:: Calibrate performance models
  1820. * STARPU_PREFETCH:: Use data prefetch
  1821. * STARPU_SCHED_ALPHA:: Computation factor
  1822. * STARPU_SCHED_BETA:: Communication factor
  1823. @end menu
  1824. @node STARPU_SCHED
  1825. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1826. @table @asis
  1827. @item @emph{Description}:
  1828. This chooses between the different scheduling policies proposed by StarPU: work
  1829. random, stealing, greedy, with performance models, etc.
  1830. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1831. @end table
  1832. @node STARPU_CALIBRATE
  1833. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1834. @table @asis
  1835. @item @emph{Description}:
  1836. If this variable is set to 1, the performance models are calibrated during
  1837. the execution. If it is set to 2, the previous values are dropped to restart
  1838. calibration from scratch. Setting this variable to 0 disable calibration, this
  1839. is the default behaviour.
  1840. Note: this currently only applies to dm and dmda scheduling policies.
  1841. @end table
  1842. @node STARPU_PREFETCH
  1843. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1844. @table @asis
  1845. @item @emph{Description}:
  1846. This variable indicates whether data prefetching should be enabled (0 means
  1847. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1848. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1849. advance, so that data is already present on the GPU when the task starts. As a
  1850. result, computation and data transfers are overlapped.
  1851. @end table
  1852. @node STARPU_SCHED_ALPHA
  1853. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1854. @table @asis
  1855. @item @emph{Description}:
  1856. To estimate the cost of a task StarPU takes into account the estimated
  1857. computation time (obtained thanks to performance models). The alpha factor is
  1858. the coefficient to be applied to it before adding it to the communication part.
  1859. @end table
  1860. @node STARPU_SCHED_BETA
  1861. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1862. @table @asis
  1863. @item @emph{Description}:
  1864. To estimate the cost of a task StarPU takes into account the estimated
  1865. data transfer time (obtained thanks to performance models). The beta factor is
  1866. the coefficient to be applied to it before adding it to the computation part.
  1867. @end table
  1868. @node Misc
  1869. @subsection Miscellaneous and debug
  1870. @menu
  1871. * STARPU_SILENT:: Disable verbose mode
  1872. * STARPU_LOGFILENAME:: Select debug file name
  1873. * STARPU_FXT_PREFIX:: FxT trace location
  1874. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1875. @end menu
  1876. @node STARPU_SILENT
  1877. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1878. @table @asis
  1879. @item @emph{Description}:
  1880. This variable allows to disable verbose mode at runtime when StarPU
  1881. has been configured with the option @code{--enable-verbose}.
  1882. @end table
  1883. @node STARPU_LOGFILENAME
  1884. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1885. @table @asis
  1886. @item @emph{Description}:
  1887. This variable specifies in which file the debugging output should be saved to.
  1888. @end table
  1889. @node STARPU_FXT_PREFIX
  1890. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1891. @table @asis
  1892. @item @emph{Description}
  1893. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1894. @end table
  1895. @node STARPU_LIMIT_GPU_MEM
  1896. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1897. @table @asis
  1898. @item @emph{Description}
  1899. This variable specifies the maximum number of megabytes that should be
  1900. available to the application on each GPUs. In case this value is smaller than
  1901. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1902. on the device. This variable is intended to be used for experimental purposes
  1903. as it emulates devices that have a limited amount of memory.
  1904. @end table
  1905. @c ---------------------------------------------------------------------
  1906. @c StarPU API
  1907. @c ---------------------------------------------------------------------
  1908. @node StarPU API
  1909. @chapter StarPU API
  1910. @menu
  1911. * Initialization and Termination:: Initialization and Termination methods
  1912. * Workers' Properties:: Methods to enumerate workers' properties
  1913. * Data Library:: Methods to manipulate data
  1914. * Data Interfaces::
  1915. * Data Partition::
  1916. * Codelets and Tasks:: Methods to construct tasks
  1917. * Explicit Dependencies:: Explicit Dependencies
  1918. * Implicit Data Dependencies:: Implicit Data Dependencies
  1919. * Performance Model API::
  1920. * Profiling API:: Profiling API
  1921. * CUDA extensions:: CUDA extensions
  1922. * OpenCL extensions:: OpenCL extensions
  1923. * Cell extensions:: Cell extensions
  1924. * Miscellaneous helpers::
  1925. @end menu
  1926. @node Initialization and Termination
  1927. @section Initialization and Termination
  1928. @menu
  1929. * starpu_init:: Initialize StarPU
  1930. * struct starpu_conf:: StarPU runtime configuration
  1931. * starpu_conf_init:: Initialize starpu_conf structure
  1932. * starpu_shutdown:: Terminate StarPU
  1933. @end menu
  1934. @node starpu_init
  1935. @subsection @code{starpu_init} -- Initialize StarPU
  1936. @table @asis
  1937. @item @emph{Description}:
  1938. This is StarPU initialization method, which must be called prior to any other
  1939. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1940. policy, number of cores, ...) by passing a non-null argument. Default
  1941. configuration is used if the passed argument is @code{NULL}.
  1942. @item @emph{Return value}:
  1943. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1944. indicates that no worker was available (so that StarPU was not initialized).
  1945. @item @emph{Prototype}:
  1946. @code{int starpu_init(struct starpu_conf *conf);}
  1947. @end table
  1948. @node struct starpu_conf
  1949. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1950. @table @asis
  1951. @item @emph{Description}:
  1952. This structure is passed to the @code{starpu_init} function in order
  1953. to configure StarPU.
  1954. When the default value is used, StarPU automatically selects the number
  1955. of processing units and takes the default scheduling policy. This parameter
  1956. overwrites the equivalent environment variables.
  1957. @item @emph{Fields}:
  1958. @table @asis
  1959. @item @code{sched_policy_name} (default = NULL):
  1960. This is the name of the scheduling policy. This can also be specified with the
  1961. @code{STARPU_SCHED} environment variable.
  1962. @item @code{sched_policy} (default = NULL):
  1963. This is the definition of the scheduling policy. This field is ignored
  1964. if @code{sched_policy_name} is set.
  1965. @item @code{ncpus} (default = -1):
  1966. This is the number of CPU cores that StarPU can use. This can also be
  1967. specified with the @code{STARPU_NCPUS} environment variable.
  1968. @item @code{ncuda} (default = -1):
  1969. This is the number of CUDA devices that StarPU can use. This can also be
  1970. specified with the @code{STARPU_NCUDA} environment variable.
  1971. @item @code{nopencl} (default = -1):
  1972. This is the number of OpenCL devices that StarPU can use. This can also be
  1973. specified with the @code{STARPU_NOPENCL} environment variable.
  1974. @item @code{nspus} (default = -1):
  1975. This is the number of Cell SPUs that StarPU can use. This can also be
  1976. specified with the @code{STARPU_NGORDON} environment variable.
  1977. @item @code{use_explicit_workers_bindid} (default = 0)
  1978. If this flag is set, the @code{workers_bindid} array indicates where the
  1979. different workers are bound, otherwise StarPU automatically selects where to
  1980. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1981. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1982. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1983. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1984. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1985. where to bind the different workers. The i-th entry of the
  1986. @code{workers_bindid} indicates the logical identifier of the processor which
  1987. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1988. either determined by the OS, or provided by the @code{hwloc} library in case it
  1989. is available.
  1990. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1991. ignored.
  1992. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1993. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1994. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1995. CUDA devices in a round-robin fashion.
  1996. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1997. ignored.
  1998. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1999. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2000. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2001. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2002. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2003. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2004. OpenCL devices in a round-robin fashion.
  2005. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2006. @item @code{calibrate} (default = 0):
  2007. If this flag is set, StarPU will calibrate the performance models when
  2008. executing tasks. If this value is equal to -1, the default value is used. The
  2009. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2010. variable when it is set.
  2011. @end table
  2012. @end table
  2013. @node starpu_conf_init
  2014. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2015. @table @asis
  2016. This function initializes the @code{starpu_conf} structure passed as argument
  2017. with the default values. In case some configuration parameters are already
  2018. specified through environment variables, @code{starpu_conf_init} initializes
  2019. the fields of the structure according to the environment variables. For
  2020. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2021. @code{.ncuda} field of the structure passed as argument.
  2022. @item @emph{Return value}:
  2023. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2024. indicates that the argument was NULL.
  2025. @item @emph{Prototype}:
  2026. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2027. @end table
  2028. @node starpu_shutdown
  2029. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2030. @table @asis
  2031. @item @emph{Description}:
  2032. This is StarPU termination method. It must be called at the end of the
  2033. application: statistics and other post-mortem debugging information are not
  2034. guaranteed to be available until this method has been called.
  2035. @item @emph{Prototype}:
  2036. @code{void starpu_shutdown(void);}
  2037. @end table
  2038. @node Workers' Properties
  2039. @section Workers' Properties
  2040. @menu
  2041. * starpu_worker_get_count:: Get the number of processing units
  2042. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2043. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2044. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2045. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2046. * starpu_worker_get_id:: Get the identifier of the current worker
  2047. * starpu_worker_get_devid:: Get the device identifier of a worker
  2048. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2049. * starpu_worker_get_name:: Get the name of a worker
  2050. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2051. @end menu
  2052. @node starpu_worker_get_count
  2053. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2054. @table @asis
  2055. @item @emph{Description}:
  2056. This function returns the number of workers (i.e. processing units executing
  2057. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2058. @item @emph{Prototype}:
  2059. @code{unsigned starpu_worker_get_count(void);}
  2060. @end table
  2061. @node starpu_cpu_worker_get_count
  2062. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2063. @table @asis
  2064. @item @emph{Description}:
  2065. This function returns the number of CPUs controlled by StarPU. The returned
  2066. value should be at most @code{STARPU_NMAXCPUS}.
  2067. @item @emph{Prototype}:
  2068. @code{unsigned starpu_cpu_worker_get_count(void);}
  2069. @end table
  2070. @node starpu_cuda_worker_get_count
  2071. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2072. @table @asis
  2073. @item @emph{Description}:
  2074. This function returns the number of CUDA devices controlled by StarPU. The returned
  2075. value should be at most @code{STARPU_MAXCUDADEVS}.
  2076. @item @emph{Prototype}:
  2077. @code{unsigned starpu_cuda_worker_get_count(void);}
  2078. @end table
  2079. @node starpu_opencl_worker_get_count
  2080. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2081. @table @asis
  2082. @item @emph{Description}:
  2083. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2084. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2085. @item @emph{Prototype}:
  2086. @code{unsigned starpu_opencl_worker_get_count(void);}
  2087. @end table
  2088. @node starpu_spu_worker_get_count
  2089. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2090. @table @asis
  2091. @item @emph{Description}:
  2092. This function returns the number of Cell SPUs controlled by StarPU.
  2093. @item @emph{Prototype}:
  2094. @code{unsigned starpu_opencl_worker_get_count(void);}
  2095. @end table
  2096. @node starpu_worker_get_id
  2097. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2098. @table @asis
  2099. @item @emph{Description}:
  2100. This function returns the identifier of the worker associated to the calling
  2101. thread. The returned value is either -1 if the current context is not a StarPU
  2102. worker (i.e. when called from the application outside a task or a callback), or
  2103. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2104. @item @emph{Prototype}:
  2105. @code{int starpu_worker_get_id(void);}
  2106. @end table
  2107. @node starpu_worker_get_devid
  2108. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2109. @table @asis
  2110. @item @emph{Description}:
  2111. This functions returns the device id of the worker associated to an identifier
  2112. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2113. CUDA worker, this device identifier is the logical device identifier exposed by
  2114. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2115. identifier of a CPU worker is the logical identifier of the core on which the
  2116. worker was bound; this identifier is either provided by the OS or by the
  2117. @code{hwloc} library in case it is available.
  2118. @item @emph{Prototype}:
  2119. @code{int starpu_worker_get_devid(int id);}
  2120. @end table
  2121. @node starpu_worker_get_type
  2122. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2123. @table @asis
  2124. @item @emph{Description}:
  2125. This function returns the type of worker associated to an identifier (as
  2126. returned by the @code{starpu_worker_get_id} function). The returned value
  2127. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2128. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2129. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2130. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2131. identifier is unspecified.
  2132. @item @emph{Prototype}:
  2133. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2134. @end table
  2135. @node starpu_worker_get_name
  2136. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2137. @table @asis
  2138. @item @emph{Description}:
  2139. StarPU associates a unique human readable string to each processing unit. This
  2140. function copies at most the @code{maxlen} first bytes of the unique string
  2141. associated to a worker identified by its identifier @code{id} into the
  2142. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2143. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2144. function on an invalid identifier results in an unspecified behaviour.
  2145. @item @emph{Prototype}:
  2146. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2147. @end table
  2148. @node starpu_worker_get_memory_node
  2149. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2150. @table @asis
  2151. @item @emph{Description}:
  2152. This function returns the identifier of the memory node associated to the
  2153. worker identified by @code{workerid}.
  2154. @item @emph{Prototype}:
  2155. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2156. @end table
  2157. @node Data Library
  2158. @section Data Library
  2159. This section describes the data management facilities provided by StarPU.
  2160. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2161. design their own data interfaces if required.
  2162. @menu
  2163. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2164. * starpu_access_mode:: Data access mode
  2165. * unsigned memory_node:: Memory node
  2166. * starpu_data_handle:: StarPU opaque data handle
  2167. * void *interface:: StarPU data interface
  2168. * starpu_data_register:: Register a piece of data to StarPU
  2169. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2170. * starpu_data_invalidate:: Invalidate all data replicates
  2171. * starpu_data_acquire:: Access registered data from the application
  2172. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2173. * starpu_data_release:: Release registered data from the application
  2174. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2175. @end menu
  2176. @node starpu_data_malloc_pinned_if_possible
  2177. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2178. @table @asis
  2179. @item @emph{Description}:
  2180. This function allocates data of the given size. It will also try to pin it in
  2181. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2182. thus permit data transfer and computation overlapping.
  2183. @item @emph{Prototype}:
  2184. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2185. @end table
  2186. @node starpu_access_mode
  2187. @subsection @code{starpu_access_mode} -- Data access mode
  2188. This datatype describes a data access mode. The different available modes are:
  2189. @table @asis
  2190. @table @asis
  2191. @item @code{STARPU_R} read-only mode.
  2192. @item @code{STARPU_W} write-only mode.
  2193. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2194. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2195. @end table
  2196. @end table
  2197. @node unsigned memory_node
  2198. @subsection @code{unsigned memory_node} -- Memory node
  2199. @table @asis
  2200. @item @emph{Description}:
  2201. Every worker is associated to a memory node which is a logical abstraction of
  2202. the address space from which the processing unit gets its data. For instance,
  2203. the memory node associated to the different CPU workers represents main memory
  2204. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2205. Every memory node is identified by a logical index which is accessible from the
  2206. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2207. to StarPU, the specified memory node indicates where the piece of data
  2208. initially resides (we also call this memory node the home node of a piece of
  2209. data).
  2210. @end table
  2211. @node starpu_data_handle
  2212. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2213. @table @asis
  2214. @item @emph{Description}:
  2215. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2216. data. Once a piece of data has been registered to StarPU, it is associated to a
  2217. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2218. over the entire machine, so that we can maintain data consistency and locate
  2219. data replicates for instance.
  2220. @end table
  2221. @node void *interface
  2222. @subsection @code{void *interface} -- StarPU data interface
  2223. @table @asis
  2224. @item @emph{Description}:
  2225. Data management is done at a high-level in StarPU: rather than accessing a mere
  2226. list of contiguous buffers, the tasks may manipulate data that are described by
  2227. a high-level construct which we call data interface.
  2228. An example of data interface is the "vector" interface which describes a
  2229. contiguous data array on a spefic memory node. This interface is a simple
  2230. structure containing the number of elements in the array, the size of the
  2231. elements, and the address of the array in the appropriate address space (this
  2232. address may be invalid if there is no valid copy of the array in the memory
  2233. node). More informations on the data interfaces provided by StarPU are
  2234. given in @ref{Data Interfaces}.
  2235. When a piece of data managed by StarPU is used by a task, the task
  2236. implementation is given a pointer to an interface describing a valid copy of
  2237. the data that is accessible from the current processing unit.
  2238. @end table
  2239. @node starpu_data_register
  2240. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2241. @table @asis
  2242. @item @emph{Description}:
  2243. Register a piece of data into the handle located at the @code{handleptr}
  2244. address. The @code{interface} buffer contains the initial description of the
  2245. data in the home node. The @code{ops} argument is a pointer to a structure
  2246. describing the different methods used to manipulate this type of interface. See
  2247. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2248. If @code{home_node} is -1, StarPU will automatically
  2249. allocate the memory when it is used for the
  2250. first time in write-only mode. Once such data handle has been automatically
  2251. allocated, it is possible to access it using any access mode.
  2252. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2253. matrix) which can be registered by the means of helper functions (e.g.
  2254. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2255. @item @emph{Prototype}:
  2256. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2257. uint32_t home_node,
  2258. void *interface,
  2259. struct starpu_data_interface_ops_t *ops);}
  2260. @end table
  2261. @node starpu_data_unregister
  2262. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2263. @table @asis
  2264. @item @emph{Description}:
  2265. This function unregisters a data handle from StarPU. If the data was
  2266. automatically allocated by StarPU because the home node was -1, all
  2267. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2268. is put back into the home node in the buffer that was initially registered.
  2269. Using a data handle that has been unregistered from StarPU results in an
  2270. undefined behaviour.
  2271. @item @emph{Prototype}:
  2272. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2273. @end table
  2274. @node starpu_data_invalidate
  2275. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2276. @table @asis
  2277. @item @emph{Description}:
  2278. Destroy all replicates of the data handle. After data invalidation, the first
  2279. access to the handle must be performed in write-only mode. Accessing an
  2280. invalidated data in read-mode results in undefined behaviour.
  2281. @item @emph{Prototype}:
  2282. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2283. @end table
  2284. @c TODO create a specific sections about user interaction with the DSM ?
  2285. @node starpu_data_acquire
  2286. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2287. @table @asis
  2288. @item @emph{Description}:
  2289. The application must call this function prior to accessing registered data from
  2290. main memory outside tasks. StarPU ensures that the application will get an
  2291. up-to-date copy of the data in main memory located where the data was
  2292. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2293. be consistent with the access mode specified in the @code{mode} argument.
  2294. @code{starpu_data_release} must be called once the application does not need to
  2295. access the piece of data anymore.
  2296. Note that implicit data dependencies are also enforced by
  2297. @code{starpu_data_acquire} in case they are enabled.
  2298. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2299. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2300. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2301. @item @emph{Prototype}:
  2302. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2303. @end table
  2304. @node starpu_data_acquire_cb
  2305. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2306. @table @asis
  2307. @item @emph{Description}:
  2308. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2309. @code{starpu_data_release}. When the data specified in the first argument is
  2310. available in the appropriate access mode, the callback function is executed.
  2311. The application may access the requested data during the execution of this
  2312. callback. The callback function must call @code{starpu_data_release} once the
  2313. application does not need to access the piece of data anymore.
  2314. Note that implicit data dependencies are also enforced by
  2315. @code{starpu_data_acquire_cb} in case they are enabled.
  2316. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2317. be called from task callbacks. Upon successful completion, this function
  2318. returns 0.
  2319. @item @emph{Prototype}:
  2320. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2321. @end table
  2322. @node starpu_data_release
  2323. @subsection @code{starpu_data_release} -- Release registered data from the application
  2324. @table @asis
  2325. @item @emph{Description}:
  2326. This function releases the piece of data acquired by the application either by
  2327. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2328. @item @emph{Prototype}:
  2329. @code{void starpu_data_release(starpu_data_handle handle);}
  2330. @end table
  2331. @node starpu_data_set_wt_mask
  2332. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2333. @table @asis
  2334. @item @emph{Description}:
  2335. This function sets the write-through mask of a given data, i.e. a bitmask of
  2336. nodes where the data should be always replicated after modification.
  2337. @item @emph{Prototype}:
  2338. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2339. @end table
  2340. @node Data Interfaces
  2341. @section Data Interfaces
  2342. @menu
  2343. * Variable Interface::
  2344. * Vector Interface::
  2345. * Matrix Interface::
  2346. * 3D Matrix Interface::
  2347. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2348. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2349. @end menu
  2350. @node Variable Interface
  2351. @subsection Variable Interface
  2352. @table @asis
  2353. @item @emph{Description}:
  2354. This variant of @code{starpu_data_register} uses the variable interface,
  2355. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2356. and @code{elemsize} is the size of the variable.
  2357. @item @emph{Prototype}:
  2358. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2359. uint32_t home_node,
  2360. uintptr_t ptr, size_t elemsize);}
  2361. @item @emph{Example}:
  2362. @cartouche
  2363. @smallexample
  2364. float var;
  2365. starpu_data_handle var_handle;
  2366. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2367. @end smallexample
  2368. @end cartouche
  2369. @end table
  2370. @node Vector Interface
  2371. @subsection Vector Interface
  2372. @table @asis
  2373. @item @emph{Description}:
  2374. This variant of @code{starpu_data_register} uses the vector interface,
  2375. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2376. element in the home node. @code{nx} is the number of elements in the vector.
  2377. @code{elemsize} is the size of each element.
  2378. @item @emph{Prototype}:
  2379. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2380. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2381. @item @emph{Example}:
  2382. @cartouche
  2383. @smallexample
  2384. float vector[NX];
  2385. starpu_data_handle vector_handle;
  2386. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2387. sizeof(vector[0]));
  2388. @end smallexample
  2389. @end cartouche
  2390. @end table
  2391. @node Matrix Interface
  2392. @subsection Matrix Interface
  2393. @table @asis
  2394. @item @emph{Description}:
  2395. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2396. matrices of elements. @code{ptr} is the address of the first element in the home
  2397. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2398. of elements in a row (this can be different from @code{ld} if there are extra
  2399. elements for alignment for instance). @code{ny} is the number of rows.
  2400. @code{elemsize} is the size of each element.
  2401. @item @emph{Prototype}:
  2402. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2403. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2404. uint32_t ny, size_t elemsize);}
  2405. @item @emph{Example}:
  2406. @cartouche
  2407. @smallexample
  2408. float *matrix;
  2409. starpu_data_handle matrix_handle;
  2410. matrix = (float*)malloc(width * height * sizeof(float));
  2411. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2412. width, width, height, sizeof(float));
  2413. @end smallexample
  2414. @end cartouche
  2415. @end table
  2416. @node 3D Matrix Interface
  2417. @subsection 3D Matrix Interface
  2418. @table @asis
  2419. @item @emph{Description}:
  2420. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2421. @code{ptr} is the address of the array of first element in the home node.
  2422. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2423. of rows between z planes. @code{nx} is the number of elements in a row (this
  2424. can be different from @code{ldy} if there are extra elements for alignment
  2425. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2426. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2427. each element.
  2428. @item @emph{Prototype}:
  2429. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2430. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2431. uint32_t ny, uint32_t nz, size_t elemsize);}
  2432. @item @emph{Example}:
  2433. @cartouche
  2434. @smallexample
  2435. float *block;
  2436. starpu_data_handle block_handle;
  2437. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2438. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2439. nx, nx*ny, nx, ny, nz, sizeof(float));
  2440. @end smallexample
  2441. @end cartouche
  2442. @end table
  2443. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2444. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2445. @table @asis
  2446. @item @emph{Description}:
  2447. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2448. TODO
  2449. @item @emph{Prototype}:
  2450. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2451. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2452. @item @emph{Example}:
  2453. @cartouche
  2454. @smallexample
  2455. @end smallexample
  2456. @end cartouche
  2457. @end table
  2458. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2459. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2460. @table @asis
  2461. @item @emph{Description}:
  2462. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2463. TODO
  2464. @item @emph{Prototype}:
  2465. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2466. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2467. @item @emph{Example}:
  2468. @cartouche
  2469. @smallexample
  2470. @end smallexample
  2471. @end cartouche
  2472. @end table
  2473. @node Data Partition
  2474. @section Data Partition
  2475. @menu
  2476. * struct starpu_data_filter:: StarPU filter structure
  2477. * starpu_data_partition:: Partition Data
  2478. * starpu_data_unpartition:: Unpartition Data
  2479. * starpu_data_get_nb_children::
  2480. * starpu_data_get_sub_data::
  2481. * Predefined filter functions::
  2482. @end menu
  2483. @node struct starpu_data_filter
  2484. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2485. @table @asis
  2486. @item @emph{Description}:
  2487. The filter structure describes a data partitioning operation, to be given to the
  2488. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2489. @item @emph{Fields}:
  2490. @table @asis
  2491. @item @code{filter_func}:
  2492. This function fills the @code{child_interface} structure with interface
  2493. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2494. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2495. @item @code{nchildren}:
  2496. This is the number of parts to partition the data into.
  2497. @item @code{get_nchildren}:
  2498. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2499. children depends on the actual data (e.g. the number of blocks in a sparse
  2500. matrix).
  2501. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2502. @item @code{get_child_ops}:
  2503. In case the resulting children use a different data interface, this function
  2504. returns which interface is used by child number @code{id}.
  2505. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2506. @item @code{filter_arg}:
  2507. Some filters take an addition parameter, but this is usually unused.
  2508. @item @code{filter_arg_ptr}:
  2509. Some filters take an additional array parameter like the sizes of the parts, but
  2510. this is usually unused.
  2511. @end table
  2512. @end table
  2513. @node starpu_data_partition
  2514. @subsection starpu_data_partition -- Partition Data
  2515. @table @asis
  2516. @item @emph{Description}:
  2517. This requests partitioning one StarPU data @code{initial_handle} into several
  2518. subdata according to the filter @code{f}
  2519. @item @emph{Prototype}:
  2520. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2521. @item @emph{Example}:
  2522. @cartouche
  2523. @smallexample
  2524. struct starpu_data_filter f = @{
  2525. .filter_func = starpu_vertical_block_filter_func,
  2526. .nchildren = nslicesx,
  2527. .get_nchildren = NULL,
  2528. .get_child_ops = NULL
  2529. @};
  2530. starpu_data_partition(A_handle, &f);
  2531. @end smallexample
  2532. @end cartouche
  2533. @end table
  2534. @node starpu_data_unpartition
  2535. @subsection starpu_data_unpartition -- Unpartition data
  2536. @table @asis
  2537. @item @emph{Description}:
  2538. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2539. collected back into one big piece in the @code{gathering_node} (usually 0).
  2540. @item @emph{Prototype}:
  2541. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2542. @item @emph{Example}:
  2543. @cartouche
  2544. @smallexample
  2545. starpu_data_unpartition(A_handle, 0);
  2546. @end smallexample
  2547. @end cartouche
  2548. @end table
  2549. @node starpu_data_get_nb_children
  2550. @subsection starpu_data_get_nb_children
  2551. @table @asis
  2552. @item @emph{Description}:
  2553. This function returns the number of children.
  2554. @item @emph{Return value}:
  2555. The number of children.
  2556. @item @emph{Prototype}:
  2557. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2558. @end table
  2559. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2560. @node starpu_data_get_sub_data
  2561. @subsection starpu_data_get_sub_data
  2562. @table @asis
  2563. @item @emph{Description}:
  2564. After partitioning a StarPU data by applying a filter,
  2565. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2566. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2567. is the number of filters to traverse (in case several filters have been applied,
  2568. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2569. parameters are the indexes.
  2570. @item @emph{Return value}:
  2571. A handle to the subdata.
  2572. @item @emph{Prototype}:
  2573. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2574. @item @emph{Example}:
  2575. @cartouche
  2576. @smallexample
  2577. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2578. @end smallexample
  2579. @end cartouche
  2580. @end table
  2581. @node Predefined filter functions
  2582. @subsection Predefined filter functions
  2583. @menu
  2584. * Partitioning BCSR Data::
  2585. * Partitioning BLAS interface::
  2586. * Partitioning Vector Data::
  2587. * Partitioning Block Data::
  2588. @end menu
  2589. This section gives a partial list of the predefined partitioning functions.
  2590. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2591. list can be found in @code{starpu_data_filters.h} .
  2592. @node Partitioning BCSR Data
  2593. @subsubsection Partitioning BCSR Data
  2594. @table @asis
  2595. @item @emph{Description}:
  2596. TODO
  2597. @item @emph{Prototype}:
  2598. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2599. @end table
  2600. @table @asis
  2601. @item @emph{Description}:
  2602. TODO
  2603. @item @emph{Prototype}:
  2604. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2605. @end table
  2606. @node Partitioning BLAS interface
  2607. @subsubsection Partitioning BLAS interface
  2608. @table @asis
  2609. @item @emph{Description}:
  2610. This partitions a dense Matrix into horizontal blocks.
  2611. @item @emph{Prototype}:
  2612. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2613. @end table
  2614. @table @asis
  2615. @item @emph{Description}:
  2616. This partitions a dense Matrix into vertical blocks.
  2617. @item @emph{Prototype}:
  2618. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2619. @end table
  2620. @node Partitioning Vector Data
  2621. @subsubsection Partitioning Vector Data
  2622. @table @asis
  2623. @item @emph{Description}:
  2624. This partitions a vector into blocks of the same size.
  2625. @item @emph{Prototype}:
  2626. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2627. @end table
  2628. @table @asis
  2629. @item @emph{Description}:
  2630. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2631. @item @emph{Prototype}:
  2632. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2633. @end table
  2634. @table @asis
  2635. @item @emph{Description}:
  2636. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2637. @item @emph{Prototype}:
  2638. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2639. @end table
  2640. @node Partitioning Block Data
  2641. @subsubsection Partitioning Block Data
  2642. @table @asis
  2643. @item @emph{Description}:
  2644. This partitions a 3D matrix along the X axis.
  2645. @item @emph{Prototype}:
  2646. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2647. @end table
  2648. @node Codelets and Tasks
  2649. @section Codelets and Tasks
  2650. @menu
  2651. * struct starpu_codelet:: StarPU codelet structure
  2652. * struct starpu_task:: StarPU task structure
  2653. * starpu_task_init:: Initialize a Task
  2654. * starpu_task_create:: Allocate and Initialize a Task
  2655. * starpu_task_deinit:: Release all the resources used by a Task
  2656. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2657. * starpu_task_wait:: Wait for the termination of a Task
  2658. * starpu_task_submit:: Submit a Task
  2659. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2660. * starpu_get_current_task:: Return the task currently executed by the worker
  2661. * starpu_display_codelet_stats:: Display statistics
  2662. @end menu
  2663. @node struct starpu_codelet
  2664. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2665. @table @asis
  2666. @item @emph{Description}:
  2667. The codelet structure describes a kernel that is possibly implemented on various
  2668. targets. For compatibility, make sure to initialize the whole structure to zero.
  2669. @item @emph{Fields}:
  2670. @table @asis
  2671. @item @code{where}:
  2672. Indicates which types of processing units are able to execute the codelet.
  2673. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2674. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2675. indicates that it is only available on Cell SPUs.
  2676. @item @code{cpu_func} (optional):
  2677. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2678. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2679. argument being the array of data managed by the data management library, and
  2680. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2681. field of the @code{starpu_task} structure.
  2682. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2683. the @code{where} field, it must be non-null otherwise.
  2684. @item @code{cuda_func} (optional):
  2685. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2686. must be a host-function written in the CUDA runtime API}. Its prototype must
  2687. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2688. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2689. field, it must be non-null otherwise.
  2690. @item @code{opencl_func} (optional):
  2691. Is a function pointer to the OpenCL implementation of the codelet. Its
  2692. prototype must be:
  2693. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2694. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2695. @code{where} field, it must be non-null otherwise.
  2696. @item @code{gordon_func} (optional):
  2697. This is the index of the Cell SPU implementation within the Gordon library.
  2698. See Gordon documentation for more details on how to register a kernel and
  2699. retrieve its index.
  2700. @item @code{nbuffers}:
  2701. Specifies the number of arguments taken by the codelet. These arguments are
  2702. managed by the DSM and are accessed from the @code{void *buffers[]}
  2703. array. The constant argument passed with the @code{cl_arg} field of the
  2704. @code{starpu_task} structure is not counted in this number. This value should
  2705. not be above @code{STARPU_NMAXBUFS}.
  2706. @item @code{model} (optional):
  2707. This is a pointer to the task duration performance model associated to this
  2708. codelet. This optional field is ignored when set to @code{NULL}.
  2709. TODO
  2710. @item @code{power_model} (optional):
  2711. This is a pointer to the task power consumption performance model associated
  2712. to this codelet. This optional field is ignored when set to @code{NULL}.
  2713. In the case of parallel codelets, this has to account for all processing units
  2714. involved in the parallel execution.
  2715. TODO
  2716. @end table
  2717. @end table
  2718. @node struct starpu_task
  2719. @subsection @code{struct starpu_task} -- StarPU task structure
  2720. @table @asis
  2721. @item @emph{Description}:
  2722. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2723. processing units managed by StarPU. It instantiates a codelet. It can either be
  2724. allocated dynamically with the @code{starpu_task_create} method, or declared
  2725. statically. In the latter case, the programmer has to zero the
  2726. @code{starpu_task} structure and to fill the different fields properly. The
  2727. indicated default values correspond to the configuration of a task allocated
  2728. with @code{starpu_task_create}.
  2729. @item @emph{Fields}:
  2730. @table @asis
  2731. @item @code{cl}:
  2732. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2733. describes where the kernel should be executed, and supplies the appropriate
  2734. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2735. such empty tasks can be useful for synchronization purposes.
  2736. @item @code{buffers}:
  2737. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2738. different pieces of data accessed by the task, and how they should be accessed.
  2739. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2740. @code{handle} field specifies the handle of the piece of data, and the
  2741. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2742. of entries in this array must be specified in the @code{nbuffers} field of the
  2743. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2744. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2745. option when configuring StarPU.
  2746. @item @code{cl_arg} (optional) (default = NULL):
  2747. This pointer is passed to the codelet through the second argument
  2748. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2749. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2750. argument.
  2751. @item @code{cl_arg_size} (optional, Cell specific):
  2752. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2753. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2754. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2755. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2756. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2757. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2758. codelets.
  2759. @item @code{callback_func} (optional) (default = @code{NULL}):
  2760. This is a function pointer of prototype @code{void (*f)(void *)} which
  2761. specifies a possible callback. If this pointer is non-null, the callback
  2762. function is executed @emph{on the host} after the execution of the task. The
  2763. callback is passed the value contained in the @code{callback_arg} field. No
  2764. callback is executed if the field is set to @code{NULL}.
  2765. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2766. This is the pointer passed to the callback function. This field is ignored if
  2767. the @code{callback_func} is set to @code{NULL}.
  2768. @item @code{use_tag} (optional) (default = 0):
  2769. If set, this flag indicates that the task should be associated with the tag
  2770. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2771. with the task and to express task dependencies easily.
  2772. @item @code{tag_id}:
  2773. This fields contains the tag associated to the task if the @code{use_tag} field
  2774. was set, it is ignored otherwise.
  2775. @item @code{synchronous}:
  2776. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2777. returns only when the task has been executed (or if no worker is able to
  2778. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2779. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2780. This field indicates a level of priority for the task. This is an integer value
  2781. that must be set between the return values of the
  2782. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2783. and that of the @code{starpu_sched_get_max_priority} for the most important
  2784. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2785. are provided for convenience and respectively returns value of
  2786. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2787. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2788. order to allow static task initialization. Scheduling strategies that take
  2789. priorities into account can use this parameter to take better scheduling
  2790. decisions, but the scheduling policy may also ignore it.
  2791. @item @code{execute_on_a_specific_worker} (default = 0):
  2792. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2793. task to the worker specified by the @code{workerid} field.
  2794. @item @code{workerid} (optional):
  2795. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2796. which is the identifier of the worker that should process this task (as
  2797. returned by @code{starpu_worker_get_id}). This field is ignored if
  2798. @code{execute_on_a_specific_worker} field is set to 0.
  2799. @item @code{detach} (optional) (default = 1):
  2800. If this flag is set, it is not possible to synchronize with the task
  2801. by the means of @code{starpu_task_wait} later on. Internal data structures
  2802. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2803. flag is not set.
  2804. @item @code{destroy} (optional) (default = 1):
  2805. If this flag is set, the task structure will automatically be freed, either
  2806. after the execution of the callback if the task is detached, or during
  2807. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2808. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2809. called explicitly. Setting this flag for a statically allocated task structure
  2810. will result in undefined behaviour.
  2811. @item @code{predicted} (output field):
  2812. Predicted duration of the task. This field is only set if the scheduling
  2813. strategy used performance models.
  2814. @end table
  2815. @end table
  2816. @node starpu_task_init
  2817. @subsection @code{starpu_task_init} -- Initialize a Task
  2818. @table @asis
  2819. @item @emph{Description}:
  2820. Initialize a task structure with default values. This function is implicitly
  2821. called by @code{starpu_task_create}. By default, tasks initialized with
  2822. @code{starpu_task_init} must be deinitialized explicitly with
  2823. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2824. constant @code{STARPU_TASK_INITIALIZER}.
  2825. @item @emph{Prototype}:
  2826. @code{void starpu_task_init(struct starpu_task *task);}
  2827. @end table
  2828. @node starpu_task_create
  2829. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2830. @table @asis
  2831. @item @emph{Description}:
  2832. Allocate a task structure and initialize it with default values. Tasks
  2833. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2834. task is terminated. If the destroy flag is explicitly unset, the resources used
  2835. by the task are freed by calling
  2836. @code{starpu_task_destroy}.
  2837. @item @emph{Prototype}:
  2838. @code{struct starpu_task *starpu_task_create(void);}
  2839. @end table
  2840. @node starpu_task_deinit
  2841. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2842. @table @asis
  2843. @item @emph{Description}:
  2844. Release all the structures automatically allocated to execute the task. This is
  2845. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2846. freed. This should be used for statically allocated tasks for instance.
  2847. @item @emph{Prototype}:
  2848. @code{void starpu_task_deinit(struct starpu_task *task);}
  2849. @end table
  2850. @node starpu_task_destroy
  2851. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2852. @table @asis
  2853. @item @emph{Description}:
  2854. Free the resource allocated during @code{starpu_task_create}. This function can be
  2855. called automatically after the execution of a task by setting the
  2856. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2857. Calling this function on a statically allocated task results in an undefined
  2858. behaviour.
  2859. @item @emph{Prototype}:
  2860. @code{void starpu_task_destroy(struct starpu_task *task);}
  2861. @end table
  2862. @node starpu_task_wait
  2863. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2864. @table @asis
  2865. @item @emph{Description}:
  2866. This function blocks until the task has been executed. It is not possible to
  2867. synchronize with a task more than once. It is not possible to wait for
  2868. synchronous or detached tasks.
  2869. @item @emph{Return value}:
  2870. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2871. indicates that the specified task was either synchronous or detached.
  2872. @item @emph{Prototype}:
  2873. @code{int starpu_task_wait(struct starpu_task *task);}
  2874. @end table
  2875. @node starpu_task_submit
  2876. @subsection @code{starpu_task_submit} -- Submit a Task
  2877. @table @asis
  2878. @item @emph{Description}:
  2879. This function submits a task to StarPU. Calling this function does
  2880. not mean that the task will be executed immediately as there can be data or task
  2881. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2882. scheduling this task with respect to such dependencies.
  2883. This function returns immediately if the @code{synchronous} field of the
  2884. @code{starpu_task} structure was set to 0, and block until the termination of
  2885. the task otherwise. It is also possible to synchronize the application with
  2886. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2887. function for instance.
  2888. @item @emph{Return value}:
  2889. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2890. means that there is no worker able to process this task (e.g. there is no GPU
  2891. available and this task is only implemented for CUDA devices).
  2892. @item @emph{Prototype}:
  2893. @code{int starpu_task_submit(struct starpu_task *task);}
  2894. @end table
  2895. @node starpu_task_wait_for_all
  2896. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2897. @table @asis
  2898. @item @emph{Description}:
  2899. This function blocks until all the tasks that were submitted are terminated.
  2900. @item @emph{Prototype}:
  2901. @code{void starpu_task_wait_for_all(void);}
  2902. @end table
  2903. @node starpu_get_current_task
  2904. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2905. @table @asis
  2906. @item @emph{Description}:
  2907. This function returns the task currently executed by the worker, or
  2908. NULL if it is called either from a thread that is not a task or simply
  2909. because there is no task being executed at the moment.
  2910. @item @emph{Prototype}:
  2911. @code{struct starpu_task *starpu_get_current_task(void);}
  2912. @end table
  2913. @node starpu_display_codelet_stats
  2914. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2915. @table @asis
  2916. @item @emph{Description}:
  2917. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2918. @item @emph{Prototype}:
  2919. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2920. @end table
  2921. @c Callbacks : what can we put in callbacks ?
  2922. @node Explicit Dependencies
  2923. @section Explicit Dependencies
  2924. @menu
  2925. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2926. * starpu_tag_t:: Task logical identifier
  2927. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2928. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2929. * starpu_tag_wait:: Block until a Tag is terminated
  2930. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2931. * starpu_tag_remove:: Destroy a Tag
  2932. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2933. @end menu
  2934. @node starpu_task_declare_deps_array
  2935. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2936. @table @asis
  2937. @item @emph{Description}:
  2938. Declare task dependencies between a @code{task} and an array of tasks of length
  2939. @code{ndeps}. This function must be called prior to the submission of the task,
  2940. but it may called after the submission or the execution of the tasks in the
  2941. array provided the tasks are still valid (ie. they were not automatically
  2942. destroyed). Calling this function on a task that was already submitted or with
  2943. an entry of @code{task_array} that is not a valid task anymore results in an
  2944. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2945. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2946. same task, in this case, the dependencies are added. It is possible to have
  2947. redundancy in the task dependencies.
  2948. @item @emph{Prototype}:
  2949. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2950. @end table
  2951. @node starpu_tag_t
  2952. @subsection @code{starpu_tag_t} -- Task logical identifier
  2953. @table @asis
  2954. @item @emph{Description}:
  2955. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2956. dependencies between tasks by the means of those tags. To do so, fill the
  2957. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2958. be arbitrary) and set the @code{use_tag} field to 1.
  2959. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2960. not be started until the tasks which holds the declared dependency tags are
  2961. completed.
  2962. @end table
  2963. @node starpu_tag_declare_deps
  2964. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2965. @table @asis
  2966. @item @emph{Description}:
  2967. Specify the dependencies of the task identified by tag @code{id}. The first
  2968. argument specifies the tag which is configured, the second argument gives the
  2969. number of tag(s) on which @code{id} depends. The following arguments are the
  2970. tags which have to be terminated to unlock the task.
  2971. This function must be called before the associated task is submitted to StarPU
  2972. with @code{starpu_task_submit}.
  2973. @item @emph{Remark}
  2974. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2975. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2976. typically need to be explicitly casted. Using the
  2977. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2978. @item @emph{Prototype}:
  2979. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2980. @item @emph{Example}:
  2981. @cartouche
  2982. @example
  2983. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2984. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2985. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2986. @end example
  2987. @end cartouche
  2988. @end table
  2989. @node starpu_tag_declare_deps_array
  2990. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2991. @table @asis
  2992. @item @emph{Description}:
  2993. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2994. does not take a variable number of arguments but an array of tags of size
  2995. @code{ndeps}.
  2996. @item @emph{Prototype}:
  2997. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2998. @item @emph{Example}:
  2999. @cartouche
  3000. @example
  3001. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3002. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3003. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3004. @end example
  3005. @end cartouche
  3006. @end table
  3007. @node starpu_tag_wait
  3008. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3009. @table @asis
  3010. @item @emph{Description}:
  3011. This function blocks until the task associated to tag @code{id} has been
  3012. executed. This is a blocking call which must therefore not be called within
  3013. tasks or callbacks, but only from the application directly. It is possible to
  3014. synchronize with the same tag multiple times, as long as the
  3015. @code{starpu_tag_remove} function is not called. Note that it is still
  3016. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3017. data structure was freed (e.g. if the @code{destroy} flag of the
  3018. @code{starpu_task} was enabled).
  3019. @item @emph{Prototype}:
  3020. @code{void starpu_tag_wait(starpu_tag_t id);}
  3021. @end table
  3022. @node starpu_tag_wait_array
  3023. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3024. @table @asis
  3025. @item @emph{Description}:
  3026. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3027. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3028. terminated.
  3029. @item @emph{Prototype}:
  3030. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3031. @end table
  3032. @node starpu_tag_remove
  3033. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3034. @table @asis
  3035. @item @emph{Description}:
  3036. This function releases the resources associated to tag @code{id}. It can be
  3037. called once the corresponding task has been executed and when there is
  3038. no other tag that depend on this tag anymore.
  3039. @item @emph{Prototype}:
  3040. @code{void starpu_tag_remove(starpu_tag_t id);}
  3041. @end table
  3042. @node starpu_tag_notify_from_apps
  3043. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3044. @table @asis
  3045. @item @emph{Description}:
  3046. This function explicitly unlocks tag @code{id}. It may be useful in the
  3047. case of applications which execute part of their computation outside StarPU
  3048. tasks (e.g. third-party libraries). It is also provided as a
  3049. convenient tool for the programmer, for instance to entirely construct the task
  3050. DAG before actually giving StarPU the opportunity to execute the tasks.
  3051. @item @emph{Prototype}:
  3052. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3053. @end table
  3054. @node Implicit Data Dependencies
  3055. @section Implicit Data Dependencies
  3056. @menu
  3057. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3058. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3059. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3060. @end menu
  3061. In this section, we describe how StarPU makes it possible to insert implicit
  3062. task dependencies in order to enforce sequential data consistency. When this
  3063. data consistency is enabled on a specific data handle, any data access will
  3064. appear as sequentially consistent from the application. For instance, if the
  3065. application submits two tasks that access the same piece of data in read-only
  3066. mode, and then a third task that access it in write mode, dependencies will be
  3067. added between the two first tasks and the third one. Implicit data dependencies
  3068. are also inserted in the case of data accesses from the application.
  3069. @node starpu_data_set_default_sequential_consistency_flag
  3070. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3071. @table @asis
  3072. @item @emph{Description}:
  3073. Set the default sequential consistency flag. If a non-zero value is passed, a
  3074. sequential data consistency will be enforced for all handles registered after
  3075. this function call, otherwise it is disabled. By default, StarPU enables
  3076. sequential data consistency. It is also possible to select the data consistency
  3077. mode of a specific data handle with the
  3078. @code{starpu_data_set_sequential_consistency_flag} function.
  3079. @item @emph{Prototype}:
  3080. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3081. @end table
  3082. @node starpu_data_get_default_sequential_consistency_flag
  3083. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3084. @table @asis
  3085. @item @emph{Description}:
  3086. This function returns the current default sequential consistency flag.
  3087. @item @emph{Prototype}:
  3088. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3089. @end table
  3090. @node starpu_data_set_sequential_consistency_flag
  3091. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3092. @table @asis
  3093. @item @emph{Description}:
  3094. Select the data consistency mode associated to a data handle. The consistency
  3095. mode set using this function has the priority over the default mode which can
  3096. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3097. @item @emph{Prototype}:
  3098. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3099. @end table
  3100. @node Performance Model API
  3101. @section Performance Model API
  3102. @menu
  3103. * starpu_load_history_debug::
  3104. * starpu_perfmodel_debugfilepath::
  3105. * starpu_perfmodel_get_arch_name::
  3106. * starpu_force_bus_sampling::
  3107. @end menu
  3108. @node starpu_load_history_debug
  3109. @subsection @code{starpu_load_history_debug}
  3110. @table @asis
  3111. @item @emph{Description}:
  3112. TODO
  3113. @item @emph{Prototype}:
  3114. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3115. @end table
  3116. @node starpu_perfmodel_debugfilepath
  3117. @subsection @code{starpu_perfmodel_debugfilepath}
  3118. @table @asis
  3119. @item @emph{Description}:
  3120. TODO
  3121. @item @emph{Prototype}:
  3122. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3123. @end table
  3124. @node starpu_perfmodel_get_arch_name
  3125. @subsection @code{starpu_perfmodel_get_arch_name}
  3126. @table @asis
  3127. @item @emph{Description}:
  3128. TODO
  3129. @item @emph{Prototype}:
  3130. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3131. @end table
  3132. @node starpu_force_bus_sampling
  3133. @subsection @code{starpu_force_bus_sampling}
  3134. @table @asis
  3135. @item @emph{Description}:
  3136. This forces sampling the bus performance model again.
  3137. @item @emph{Prototype}:
  3138. @code{void starpu_force_bus_sampling(void);}
  3139. @end table
  3140. @node Profiling API
  3141. @section Profiling API
  3142. @menu
  3143. * starpu_profiling_status_set:: starpu_profiling_status_set
  3144. * starpu_profiling_status_get:: starpu_profiling_status_get
  3145. * struct starpu_task_profiling_info:: task profiling information
  3146. * struct starpu_worker_profiling_info:: worker profiling information
  3147. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3148. * struct starpu_bus_profiling_info:: bus profiling information
  3149. * starpu_bus_get_count::
  3150. * starpu_bus_get_id::
  3151. * starpu_bus_get_src::
  3152. * starpu_bus_get_dst::
  3153. * starpu_timing_timespec_delay_us::
  3154. * starpu_timing_timespec_to_us::
  3155. * starpu_bus_profiling_helper_display_summary::
  3156. * starpu_worker_profiling_helper_display_summary::
  3157. @end menu
  3158. @node starpu_profiling_status_set
  3159. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3160. @table @asis
  3161. @item @emph{Description}:
  3162. Thie function sets the profiling status. Profiling is activated by passing
  3163. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3164. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3165. resets all profiling measurements. When profiling is enabled, the
  3166. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3167. to a valid @code{struct starpu_task_profiling_info} structure containing
  3168. information about the execution of the task.
  3169. @item @emph{Return value}:
  3170. Negative return values indicate an error, otherwise the previous status is
  3171. returned.
  3172. @item @emph{Prototype}:
  3173. @code{int starpu_profiling_status_set(int status);}
  3174. @end table
  3175. @node starpu_profiling_status_get
  3176. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3177. @table @asis
  3178. @item @emph{Description}:
  3179. Return the current profiling status or a negative value in case there was an error.
  3180. @item @emph{Prototype}:
  3181. @code{int starpu_profiling_status_get(void);}
  3182. @end table
  3183. @node struct starpu_task_profiling_info
  3184. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3185. @table @asis
  3186. @item @emph{Description}:
  3187. This structure contains information about the execution of a task. It is
  3188. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3189. structure if profiling was enabled.
  3190. @item @emph{Fields}:
  3191. @table @asis
  3192. @item @code{submit_time}:
  3193. Date of task submission (relative to the initialization of StarPU).
  3194. @item @code{start_time}:
  3195. Date of task execution beginning (relative to the initialization of StarPU).
  3196. @item @code{end_time}:
  3197. Date of task execution termination (relative to the initialization of StarPU).
  3198. @item @code{workerid}:
  3199. Identifier of the worker which has executed the task.
  3200. @end table
  3201. @end table
  3202. @node struct starpu_worker_profiling_info
  3203. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3204. @table @asis
  3205. @item @emph{Description}:
  3206. This structure contains the profiling information associated to a worker.
  3207. @item @emph{Fields}:
  3208. @table @asis
  3209. @item @code{start_time}:
  3210. Starting date for the reported profiling measurements.
  3211. @item @code{total_time}:
  3212. Duration of the profiling measurement interval.
  3213. @item @code{executing_time}:
  3214. Time spent by the worker to execute tasks during the profiling measurement interval.
  3215. @item @code{sleeping_time}:
  3216. Time spent idling by the worker during the profiling measurement interval.
  3217. @item @code{executed_tasks}:
  3218. Number of tasks executed by the worker during the profiling measurement interval.
  3219. @end table
  3220. @end table
  3221. @node starpu_worker_get_profiling_info
  3222. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3223. @table @asis
  3224. @item @emph{Description}:
  3225. Get the profiling info associated to the worker identified by @code{workerid},
  3226. and reset the profiling measurements. If the @code{worker_info} argument is
  3227. NULL, only reset the counters associated to worker @code{workerid}.
  3228. @item @emph{Return value}:
  3229. Upon successful completion, this function returns 0. Otherwise, a negative
  3230. value is returned.
  3231. @item @emph{Prototype}:
  3232. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3233. @end table
  3234. @node struct starpu_bus_profiling_info
  3235. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3236. @table @asis
  3237. @item @emph{Description}:
  3238. TODO
  3239. @item @emph{Fields}:
  3240. @table @asis
  3241. @item @code{start_time}:
  3242. TODO
  3243. @item @code{total_time}:
  3244. TODO
  3245. @item @code{transferred_bytes}:
  3246. TODO
  3247. @item @code{transfer_count}:
  3248. TODO
  3249. @end table
  3250. @end table
  3251. @node starpu_bus_get_count
  3252. @subsection @code{starpu_bus_get_count}
  3253. @table @asis
  3254. @item @emph{Description}:
  3255. TODO
  3256. @item @emph{Prototype}:
  3257. @code{int starpu_bus_get_count(void);}
  3258. @end table
  3259. @node starpu_bus_get_id
  3260. @subsection @code{starpu_bus_get_id}
  3261. @table @asis
  3262. @item @emph{Description}:
  3263. TODO
  3264. @item @emph{Prototype}:
  3265. @code{int starpu_bus_get_id(int src, int dst);}
  3266. @end table
  3267. @node starpu_bus_get_src
  3268. @subsection @code{starpu_bus_get_src}
  3269. @table @asis
  3270. @item @emph{Description}:
  3271. TODO
  3272. @item @emph{Prototype}:
  3273. @code{int starpu_bus_get_src(int busid);}
  3274. @end table
  3275. @node starpu_bus_get_dst
  3276. @subsection @code{starpu_bus_get_dst}
  3277. @table @asis
  3278. @item @emph{Description}:
  3279. TODO
  3280. @item @emph{Prototype}:
  3281. @code{int starpu_bus_get_dst(int busid);}
  3282. @end table
  3283. @node starpu_timing_timespec_delay_us
  3284. @subsection @code{starpu_timing_timespec_delay_us}
  3285. @table @asis
  3286. @item @emph{Description}:
  3287. TODO
  3288. @item @emph{Prototype}:
  3289. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3290. @end table
  3291. @node starpu_timing_timespec_to_us
  3292. @subsection @code{starpu_timing_timespec_to_us}
  3293. @table @asis
  3294. @item @emph{Description}:
  3295. TODO
  3296. @item @emph{Prototype}:
  3297. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3298. @end table
  3299. @node starpu_bus_profiling_helper_display_summary
  3300. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3301. @table @asis
  3302. @item @emph{Description}:
  3303. TODO
  3304. @item @emph{Prototype}:
  3305. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3306. @end table
  3307. @node starpu_worker_profiling_helper_display_summary
  3308. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3309. @table @asis
  3310. @item @emph{Description}:
  3311. TODO
  3312. @item @emph{Prototype}:
  3313. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3314. @end table
  3315. @node CUDA extensions
  3316. @section CUDA extensions
  3317. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3318. @menu
  3319. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3320. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3321. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3322. @end menu
  3323. @node starpu_cuda_get_local_stream
  3324. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3325. @table @asis
  3326. @item @emph{Description}:
  3327. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3328. function is only provided for convenience so that programmers can easily use
  3329. asynchronous operations within codelets without having to create a stream by
  3330. hand. Note that the application is not forced to use the stream provided by
  3331. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3332. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3333. the likelihood of having all transfers overlapped.
  3334. @item @emph{Prototype}:
  3335. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3336. @end table
  3337. @node starpu_helper_cublas_init
  3338. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3339. @table @asis
  3340. @item @emph{Description}:
  3341. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3342. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3343. controlled by StarPU. This call blocks until CUBLAS has been properly
  3344. initialized on every device.
  3345. @item @emph{Prototype}:
  3346. @code{void starpu_helper_cublas_init(void);}
  3347. @end table
  3348. @node starpu_helper_cublas_shutdown
  3349. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3350. @table @asis
  3351. @item @emph{Description}:
  3352. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3353. @item @emph{Prototype}:
  3354. @code{void starpu_helper_cublas_shutdown(void);}
  3355. @end table
  3356. @node OpenCL extensions
  3357. @section OpenCL extensions
  3358. @menu
  3359. * Enabling OpenCL:: Enabling OpenCL
  3360. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3361. * Loading OpenCL kernels:: Loading OpenCL kernels
  3362. * OpenCL statistics:: Collecting statistics from OpenCL
  3363. @end menu
  3364. @node Enabling OpenCL
  3365. @subsection Enabling OpenCL
  3366. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3367. enabled by default. To enable OpenCL, you need either to disable CUDA
  3368. when configuring StarPU:
  3369. @example
  3370. % ./configure --disable-cuda
  3371. @end example
  3372. or when running applications:
  3373. @example
  3374. % STARPU_NCUDA=0 ./application
  3375. @end example
  3376. OpenCL will automatically be started on any device not yet used by
  3377. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3378. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3379. so:
  3380. @example
  3381. % STARPU_NCUDA=2 ./application
  3382. @end example
  3383. @node Compiling OpenCL kernels
  3384. @subsection Compiling OpenCL kernels
  3385. Source codes for OpenCL kernels can be stored in a file or in a
  3386. string. StarPU provides functions to build the program executable for
  3387. each available OpenCL device as a @code{cl_program} object. This
  3388. program executable can then be loaded within a specific queue as
  3389. explained in the next section. These are only helpers, Applications
  3390. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3391. use (e.g. different programs on the different OpenCL devices, for
  3392. relocation purpose for instance).
  3393. @menu
  3394. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3395. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3396. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3397. @end menu
  3398. @node starpu_opencl_load_opencl_from_file
  3399. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3400. @table @asis
  3401. @item @emph{Description}:
  3402. TODO
  3403. @item @emph{Prototype}:
  3404. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3405. @end table
  3406. @node starpu_opencl_load_opencl_from_string
  3407. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3408. @table @asis
  3409. @item @emph{Description}:
  3410. TODO
  3411. @item @emph{Prototype}:
  3412. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3413. @end table
  3414. @node starpu_opencl_unload_opencl
  3415. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3416. @table @asis
  3417. @item @emph{Description}:
  3418. TODO
  3419. @item @emph{Prototype}:
  3420. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3421. @end table
  3422. @node Loading OpenCL kernels
  3423. @subsection Loading OpenCL kernels
  3424. @menu
  3425. * starpu_opencl_load_kernel:: Loading a kernel
  3426. * starpu_opencl_relase_kernel:: Releasing a kernel
  3427. @end menu
  3428. @node starpu_opencl_load_kernel
  3429. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3430. @table @asis
  3431. @item @emph{Description}:
  3432. TODO
  3433. @item @emph{Prototype}:
  3434. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3435. }
  3436. @end table
  3437. @node starpu_opencl_relase_kernel
  3438. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3439. @table @asis
  3440. @item @emph{Description}:
  3441. TODO
  3442. @item @emph{Prototype}:
  3443. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3444. @end table
  3445. @node OpenCL statistics
  3446. @subsection OpenCL statistics
  3447. @menu
  3448. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3449. @end menu
  3450. @node starpu_opencl_collect_stats
  3451. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3452. @table @asis
  3453. @item @emph{Description}:
  3454. After termination of the kernels, the OpenCL codelet should call this function
  3455. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3456. collect statistics about the kernel execution (used cycles, consumed power).
  3457. @item @emph{Prototype}:
  3458. @code{int starpu_opencl_collect_stats(cl_event event);}
  3459. @end table
  3460. @node Cell extensions
  3461. @section Cell extensions
  3462. nothing yet.
  3463. @node Miscellaneous helpers
  3464. @section Miscellaneous helpers
  3465. @menu
  3466. * starpu_data_cpy:: Copy a data handle into another data handle
  3467. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3468. @end menu
  3469. @node starpu_data_cpy
  3470. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3471. @table @asis
  3472. @item @emph{Description}:
  3473. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3474. The @code{asynchronous} parameter indicates whether the function should
  3475. block or not. In the case of an asynchronous call, it is possible to
  3476. synchronize with the termination of this operation either by the means of
  3477. implicit dependencies (if enabled) or by calling
  3478. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3479. this callback function is executed after the handle has been copied, and it is
  3480. given the @code{callback_arg} pointer as argument.
  3481. @item @emph{Prototype}:
  3482. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3483. @end table
  3484. @node starpu_execute_on_each_worker
  3485. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3486. @table @asis
  3487. @item @emph{Description}:
  3488. When calling this method, the offloaded function specified by the first argument is
  3489. executed by every StarPU worker that may execute the function.
  3490. The second argument is passed to the offloaded function.
  3491. The last argument specifies on which types of processing units the function
  3492. should be executed. Similarly to the @code{where} field of the
  3493. @code{starpu_codelet} structure, it is possible to specify that the function
  3494. should be executed on every CUDA device and every CPU by passing
  3495. @code{STARPU_CPU|STARPU_CUDA}.
  3496. This function blocks until the function has been executed on every appropriate
  3497. processing units, so that it may not be called from a callback function for
  3498. instance.
  3499. @item @emph{Prototype}:
  3500. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3501. @end table
  3502. @c ---------------------------------------------------------------------
  3503. @c Advanced Topics
  3504. @c ---------------------------------------------------------------------
  3505. @node Advanced Topics
  3506. @chapter Advanced Topics
  3507. @menu
  3508. * Defining a new data interface::
  3509. * Defining a new scheduling policy::
  3510. @end menu
  3511. @node Defining a new data interface
  3512. @section Defining a new data interface
  3513. @menu
  3514. * struct starpu_data_interface_ops_t:: Per-interface methods
  3515. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3516. * An example of data interface:: An example of data interface
  3517. @end menu
  3518. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3519. @node struct starpu_data_interface_ops_t
  3520. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3521. @table @asis
  3522. @item @emph{Description}:
  3523. TODO describe all the different fields
  3524. @end table
  3525. @node struct starpu_data_copy_methods
  3526. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3527. @table @asis
  3528. @item @emph{Description}:
  3529. TODO describe all the different fields
  3530. @end table
  3531. @node An example of data interface
  3532. @subsection An example of data interface
  3533. @table @asis
  3534. TODO
  3535. @end table
  3536. @node Defining a new scheduling policy
  3537. @section Defining a new scheduling policy
  3538. TODO
  3539. A full example showing how to define a new scheduling policy is available in
  3540. the StarPU sources in the directory @code{examples/scheduler/}.
  3541. @menu
  3542. * struct starpu_sched_policy_s::
  3543. * starpu_worker_set_sched_condition::
  3544. * starpu_sched_set_min_priority:: Set the minimum priority level
  3545. * starpu_sched_set_max_priority:: Set the maximum priority level
  3546. * starpu_push_local_task:: Assign a task to a worker
  3547. * Source code::
  3548. @end menu
  3549. @node struct starpu_sched_policy_s
  3550. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3551. @table @asis
  3552. @item @emph{Description}:
  3553. This structure contains all the methods that implement a scheduling policy. An
  3554. application may specify which scheduling strategy in the @code{sched_policy}
  3555. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3556. function.
  3557. @item @emph{Fields}:
  3558. @table @asis
  3559. @item @code{init_sched}:
  3560. Initialize the scheduling policy.
  3561. @item @code{deinit_sched}:
  3562. Cleanup the scheduling policy.
  3563. @item @code{push_task}:
  3564. Insert a task into the scheduler.
  3565. @item @code{push_prio_task}:
  3566. Insert a priority task into the scheduler.
  3567. @item @code{pop_task}:
  3568. Get a task from the scheduler. The mutex associated to the worker is already
  3569. taken when this method is called. If this method is defined as @code{NULL}, the
  3570. worker will only execute tasks from its local queue. In this case, the
  3571. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3572. assign tasks to the different workers.
  3573. @item @code{pop_every_task}:
  3574. Remove all available tasks from the scheduler (tasks are chained by the means
  3575. of the prev and next fields of the starpu_task structure). The mutex associated
  3576. to the worker is already taken when this method is called.
  3577. @item @code{post_exec_hook} (optionnal):
  3578. This method is called every time a task has been executed.
  3579. @item @code{policy_name}:
  3580. Name of the policy (optionnal).
  3581. @item @code{policy_description}:
  3582. Description of the policy (optionnal).
  3583. @end table
  3584. @end table
  3585. @node starpu_worker_set_sched_condition
  3586. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3587. @table @asis
  3588. @item @emph{Description}:
  3589. When there is no available task for a worker, StarPU blocks this worker on a
  3590. condition variable. This function specifies which condition variable (and the
  3591. associated mutex) should be used to block (and to wake up) a worker. Note that
  3592. multiple workers may use the same condition variable. For instance, in the case
  3593. of a scheduling strategy with a single task queue, the same condition variable
  3594. would be used to block and wake up all workers.
  3595. The initialization method of a scheduling strategy (@code{init_sched}) must
  3596. call this function once per worker.
  3597. @item @emph{Prototype}:
  3598. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3599. @end table
  3600. @node starpu_sched_set_min_priority
  3601. @subsection @code{starpu_sched_set_min_priority}
  3602. @table @asis
  3603. @item @emph{Description}:
  3604. Defines the minimum priority level supported by the scheduling policy. The
  3605. default minimum priority level is the same as the default priority level which
  3606. is 0 by convention. The application may access that value by calling the
  3607. @code{starpu_sched_get_min_priority} function. This function should only be
  3608. called from the initialization method of the scheduling policy, and should not
  3609. be used directly from the application.
  3610. @item @emph{Prototype}:
  3611. @code{void starpu_sched_set_min_priority(int min_prio);}
  3612. @end table
  3613. @node starpu_sched_set_max_priority
  3614. @subsection @code{starpu_sched_set_max_priority}
  3615. @table @asis
  3616. @item @emph{Description}:
  3617. Defines the maximum priority level supported by the scheduling policy. The
  3618. default maximum priority level is 1. The application may access that value by
  3619. calling the @code{starpu_sched_get_max_priority} function. This function should
  3620. only be called from the initialization method of the scheduling policy, and
  3621. should not be used directly from the application.
  3622. @item @emph{Prototype}:
  3623. @code{void starpu_sched_set_min_priority(int max_prio);}
  3624. @end table
  3625. @node starpu_push_local_task
  3626. @subsection @code{starpu_push_local_task}
  3627. @table @asis
  3628. @item @emph{Description}:
  3629. The scheduling policy may put tasks directly into a worker's local queue so
  3630. that it is not always necessary to create its own queue when the local queue
  3631. is sufficient. If "back" not null, the task is put at the back of the queue
  3632. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3633. a FIFO ordering.
  3634. @item @emph{Prototype}:
  3635. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3636. @end table
  3637. @node Source code
  3638. @subsection Source code
  3639. @cartouche
  3640. @smallexample
  3641. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3642. .init_sched = init_dummy_sched,
  3643. .deinit_sched = deinit_dummy_sched,
  3644. .push_task = push_task_dummy,
  3645. .push_prio_task = NULL,
  3646. .pop_task = pop_task_dummy,
  3647. .post_exec_hook = NULL,
  3648. .pop_every_task = NULL,
  3649. .policy_name = "dummy",
  3650. .policy_description = "dummy scheduling strategy"
  3651. @};
  3652. @end smallexample
  3653. @end cartouche
  3654. @c ---------------------------------------------------------------------
  3655. @c Appendices
  3656. @c ---------------------------------------------------------------------
  3657. @c ---------------------------------------------------------------------
  3658. @c Full source code for the 'Scaling a Vector' example
  3659. @c ---------------------------------------------------------------------
  3660. @node Full source code for the 'Scaling a Vector' example
  3661. @appendix Full source code for the 'Scaling a Vector' example
  3662. @menu
  3663. * Main application::
  3664. * CPU Kernel::
  3665. * CUDA Kernel::
  3666. * OpenCL Kernel::
  3667. @end menu
  3668. @node Main application
  3669. @section Main application
  3670. @smallexample
  3671. @include vector_scal_c.texi
  3672. @end smallexample
  3673. @node CPU Kernel
  3674. @section CPU Kernel
  3675. @smallexample
  3676. @include vector_scal_cpu.texi
  3677. @end smallexample
  3678. @node CUDA Kernel
  3679. @section CUDA Kernel
  3680. @smallexample
  3681. @include vector_scal_cuda.texi
  3682. @end smallexample
  3683. @node OpenCL Kernel
  3684. @section OpenCL Kernel
  3685. @menu
  3686. * Invoking the kernel::
  3687. * Source of the kernel::
  3688. @end menu
  3689. @node Invoking the kernel
  3690. @subsection Invoking the kernel
  3691. @smallexample
  3692. @include vector_scal_opencl.texi
  3693. @end smallexample
  3694. @node Source of the kernel
  3695. @subsection Source of the kernel
  3696. @smallexample
  3697. @include vector_scal_opencl_codelet.texi
  3698. @end smallexample
  3699. @bye