basic-api.texi 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Management:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_driver}
  34. @table @asis
  35. @item @code{enum starpu_archtype type}
  36. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  37. STARPU_OPENCL_DRIVER are currently supported.
  38. @item @code{union id} Anonymous union
  39. @table @asis
  40. @item @code{unsigned cpu_id}
  41. Should only be used if type is STARPU_CPU_WORKER.
  42. @item @code{unsigned cuda_id}
  43. Should only be used if type is STARPU_CUDA_WORKER.
  44. @item @code{cl_device_id opencl_id}
  45. Should only be used if type is STARPU_OPENCL_WORKER.
  46. @end table
  47. @end table
  48. @end deftp
  49. @deftp {Data Type} {struct starpu_conf}
  50. This structure is passed to the @code{starpu_init} function in order
  51. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  52. When the default value is used, StarPU automatically selects the number of
  53. processing units and takes the default scheduling policy. The environment
  54. variables overwrite the equivalent parameters.
  55. @table @asis
  56. @item @code{const char *sched_policy_name} (default = NULL)
  57. This is the name of the scheduling policy. This can also be specified
  58. with the @code{STARPU_SCHED} environment variable.
  59. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  60. This is the definition of the scheduling policy. This field is ignored
  61. if @code{sched_policy_name} is set.
  62. @item @code{int ncpus} (default = -1)
  63. This is the number of CPU cores that StarPU can use. This can also be
  64. specified with the @code{STARPU_NCPUS} environment variable.
  65. @item @code{int ncuda} (default = -1)
  66. This is the number of CUDA devices that StarPU can use. This can also
  67. be specified with the @code{STARPU_NCUDA} environment variable.
  68. @item @code{int nopencl} (default = -1)
  69. This is the number of OpenCL devices that StarPU can use. This can
  70. also be specified with the @code{STARPU_NOPENCL} environment variable.
  71. @item @code{int nspus} (default = -1)
  72. This is the number of Cell SPUs that StarPU can use. This can also be
  73. specified with the @code{STARPU_NGORDON} environment variable.
  74. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  75. If this flag is set, the @code{workers_bindid} array indicates where the
  76. different workers are bound, otherwise StarPU automatically selects where to
  77. bind the different workers. This can also be specified with the
  78. @code{STARPU_WORKERS_CPUID} environment variable.
  79. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  80. If the @code{use_explicit_workers_bindid} flag is set, this array
  81. indicates where to bind the different workers. The i-th entry of the
  82. @code{workers_bindid} indicates the logical identifier of the
  83. processor which should execute the i-th worker. Note that the logical
  84. ordering of the CPUs is either determined by the OS, or provided by
  85. the @code{hwloc} library in case it is available.
  86. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  87. If this flag is set, the CUDA workers will be attached to the CUDA devices
  88. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  89. CUDA devices in a round-robin fashion. This can also be specified with the
  90. @code{STARPU_WORKERS_CUDAID} environment variable.
  91. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  92. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  93. contains the logical identifiers of the CUDA devices (as used by
  94. @code{cudaGetDevice}).
  95. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  96. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  97. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  98. the OpenCL devices in a round-robin fashion. This can also be specified with
  99. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  100. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  101. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  102. contains the logical identifiers of the OpenCL devices to be used.
  103. @item @code{int calibrate} (default = 0)
  104. If this flag is set, StarPU will calibrate the performance models when
  105. executing tasks. If this value is equal to -1, the default value is used. This
  106. can also be specified with the @code{STARPU_CALIBRATE} environment variable.
  107. @item @code{int single_combined_worker} (default = 0)
  108. By default, StarPU executes parallel tasks concurrently.
  109. Some parallel libraries (e.g. most OpenMP implementations) however do
  110. not support concurrent calls to parallel code. In such case, setting this flag
  111. makes StarPU only start one parallel task at a time.
  112. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  113. @item @code{int disable_asynchronous_copy} (default = 0)
  114. This flag should be set to 1 to disable asynchronous copies between
  115. CPUs and accelerators. This can also be specified with the
  116. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  117. The AMD implementation of OpenCL is known to
  118. fail when copying data asynchronously. When using this implementation,
  119. it is therefore necessary to disable asynchronous data transfers.
  120. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  121. This can be set to an array of CUDA device identifiers for which
  122. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  123. size is specified by the @code{n_cuda_opengl_interoperability} field below
  124. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  125. This has to be set to the size of the array pointed to by the
  126. @code{cuda_opengl_interoperability} field.
  127. @item @code{struct starpu_driver *not_launched_drivers}
  128. The drivers that should not be launched by StarPU.
  129. @item @code{unsigned nnot_launched_drivers}
  130. The number of StarPU drivers that should not be launched by StarPU.
  131. @end table
  132. @end deftp
  133. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  134. This function initializes the @var{conf} structure passed as argument
  135. with the default values. In case some configuration parameters are already
  136. specified through environment variables, @code{starpu_conf_init} initializes
  137. the fields of the structure according to the environment variables. For
  138. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  139. @code{.ncuda} field of the structure passed as argument.
  140. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  141. indicates that the argument was NULL.
  142. @end deftypefun
  143. @deftypefun void starpu_shutdown (void)
  144. This is StarPU termination method. It must be called at the end of the
  145. application: statistics and other post-mortem debugging information are not
  146. guaranteed to be available until this method has been called.
  147. @end deftypefun
  148. @deftypefun int starpu_asynchronous_copy_disabled ()
  149. Return 1 if asynchronous data transfers between CPU and accelerators
  150. are disabled.
  151. @end deftypefun
  152. @node Workers' Properties
  153. @section Workers' Properties
  154. @deftp {Data Type} {enum starpu_archtype}
  155. The different values are:
  156. @table @asis
  157. @item @code{STARPU_CPU_WORKER}
  158. @item @code{STARPU_CUDA_WORKER}
  159. @item @code{STARPU_OPENCL_WORKER}
  160. @item @code{STARPU_GORDON_WORKER}
  161. @end table
  162. @end deftp
  163. @deftypefun unsigned starpu_worker_get_count (void)
  164. This function returns the number of workers (i.e. processing units executing
  165. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  166. @end deftypefun
  167. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  168. Returns the number of workers of the given type indicated by the argument. A positive
  169. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  170. the type is not valid otherwise.
  171. @end deftypefun
  172. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  173. This function returns the number of CPUs controlled by StarPU. The returned
  174. value should be at most @code{STARPU_MAXCPUS}.
  175. @end deftypefun
  176. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  177. This function returns the number of CUDA devices controlled by StarPU. The returned
  178. value should be at most @code{STARPU_MAXCUDADEVS}.
  179. @end deftypefun
  180. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  181. This function returns the number of OpenCL devices controlled by StarPU. The returned
  182. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  183. @end deftypefun
  184. @deftypefun unsigned starpu_spu_worker_get_count (void)
  185. This function returns the number of Cell SPUs controlled by StarPU.
  186. @end deftypefun
  187. @deftypefun int starpu_worker_get_id (void)
  188. This function returns the identifier of the current worker, i.e the one associated to the calling
  189. thread. The returned value is either -1 if the current context is not a StarPU
  190. worker (i.e. when called from the application outside a task or a callback), or
  191. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  192. @end deftypefun
  193. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  194. This function gets the list of identifiers of workers with the given
  195. type. It fills the workerids array with the identifiers of the workers that have the type
  196. indicated in the first argument. The maxsize argument indicates the size of the
  197. workids array. The returned value gives the number of identifiers that were put
  198. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  199. workers with the appropriate type: in that case, the array is filled with the
  200. maxsize first elements. To avoid such overflows, the value of maxsize can be
  201. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  202. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  203. @end deftypefun
  204. @deftypefun int starpu_worker_get_devid (int @var{id})
  205. This functions returns the device id of the given worker. The worker
  206. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  207. CUDA worker, this device identifier is the logical device identifier exposed by
  208. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  209. identifier of a CPU worker is the logical identifier of the core on which the
  210. worker was bound; this identifier is either provided by the OS or by the
  211. @code{hwloc} library in case it is available.
  212. @end deftypefun
  213. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  214. This function returns the type of processing unit associated to a
  215. worker. The worker identifier is a value returned by the
  216. @code{starpu_worker_get_id} function). The returned value
  217. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  218. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  219. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  220. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  221. identifier is unspecified.
  222. @end deftypefun
  223. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  224. This function allows to get the name of a given worker.
  225. StarPU associates a unique human readable string to each processing unit. This
  226. function copies at most the @var{maxlen} first bytes of the unique string
  227. associated to a worker identified by its identifier @var{id} into the
  228. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  229. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  230. function on an invalid identifier results in an unspecified behaviour.
  231. @end deftypefun
  232. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  233. This function returns the identifier of the memory node associated to the
  234. worker identified by @var{workerid}.
  235. @end deftypefun
  236. @deftp {Data Type} {enum starpu_node_kind}
  237. todo
  238. @table @asis
  239. @item @code{STARPU_UNUSED}
  240. @item @code{STARPU_CPU_RAM}
  241. @item @code{STARPU_CUDA_RAM}
  242. @item @code{STARPU_OPENCL_RAM}
  243. @item @code{STARPU_SPU_LS}
  244. @end table
  245. @end deftp
  246. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  247. Returns the type of the given node as defined by @code{enum
  248. starpu_node_kind}. For example, when defining a new data interface,
  249. this function should be used in the allocation function to determine
  250. on which device the memory needs to be allocated.
  251. @end deftypefun
  252. @node Data Management
  253. @section Data Management
  254. @menu
  255. * Introduction to Data Management::
  256. * Basic Data Management API::
  257. * Access registered data from the application::
  258. @end menu
  259. This section describes the data management facilities provided by StarPU.
  260. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  261. design their own data interfaces if required.
  262. @node Introduction to Data Management
  263. @subsection Introduction
  264. Data management is done at a high-level in StarPU: rather than accessing a mere
  265. list of contiguous buffers, the tasks may manipulate data that are described by
  266. a high-level construct which we call data interface.
  267. An example of data interface is the "vector" interface which describes a
  268. contiguous data array on a spefic memory node. This interface is a simple
  269. structure containing the number of elements in the array, the size of the
  270. elements, and the address of the array in the appropriate address space (this
  271. address may be invalid if there is no valid copy of the array in the memory
  272. node). More informations on the data interfaces provided by StarPU are
  273. given in @ref{Data Interfaces}.
  274. When a piece of data managed by StarPU is used by a task, the task
  275. implementation is given a pointer to an interface describing a valid copy of
  276. the data that is accessible from the current processing unit.
  277. Every worker is associated to a memory node which is a logical abstraction of
  278. the address space from which the processing unit gets its data. For instance,
  279. the memory node associated to the different CPU workers represents main memory
  280. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  281. Every memory node is identified by a logical index which is accessible from the
  282. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  283. to StarPU, the specified memory node indicates where the piece of data
  284. initially resides (we also call this memory node the home node of a piece of
  285. data).
  286. @node Basic Data Management API
  287. @subsection Basic Data Management API
  288. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  289. This function allocates data of the given size in main memory. It will also try to pin it in
  290. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  291. thus permit data transfer and computation overlapping. The allocated buffer must
  292. be freed thanks to the @code{starpu_free} function.
  293. @end deftypefun
  294. @deftypefun int starpu_free (void *@var{A})
  295. This function frees memory which has previously allocated with
  296. @code{starpu_malloc}.
  297. @end deftypefun
  298. @deftp {Data Type} {enum starpu_access_mode}
  299. This datatype describes a data access mode. The different available modes are:
  300. @table @asis
  301. @item @code{STARPU_R}: read-only mode.
  302. @item @code{STARPU_W}: write-only mode.
  303. @item @code{STARPU_RW}: read-write mode.
  304. This is equivalent to @code{STARPU_R|STARPU_W}.
  305. @item @code{STARPU_SCRATCH}: scratch memory.
  306. A temporary buffer is allocated for the task, but StarPU does not
  307. enforce data consistency---i.e. each device has its own buffer,
  308. independently from each other (even for CPUs), and no data transfer is
  309. ever performed. This is useful for temporary variables to avoid
  310. allocating/freeing buffers inside each task.
  311. Currently, no behavior is defined concerning the relation with the
  312. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  313. registration---i.e., the value of the scratch buffer is undefined at
  314. entry of the codelet function. It is being considered for future
  315. extensions at least to define the initial value. For now, data to be
  316. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  317. a @code{NULL} pointer, since the value of the provided buffer is simply
  318. ignored for now.
  319. @item @code{STARPU_REDUX} reduction mode.
  320. @end table
  321. @end deftp
  322. @deftp {Data Type} {starpu_data_handle_t}
  323. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  324. data. Once a piece of data has been registered to StarPU, it is associated to a
  325. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  326. over the entire machine, so that we can maintain data consistency and locate
  327. data replicates for instance.
  328. @end deftp
  329. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  330. Register a piece of data into the handle located at the @var{handleptr}
  331. address. The @var{data_interface} buffer contains the initial description of the
  332. data in the home node. The @var{ops} argument is a pointer to a structure
  333. describing the different methods used to manipulate this type of interface. See
  334. @ref{struct starpu_data_interface_ops} for more details on this structure.
  335. If @code{home_node} is -1, StarPU will automatically
  336. allocate the memory when it is used for the
  337. first time in write-only mode. Once such data handle has been automatically
  338. allocated, it is possible to access it using any access mode.
  339. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  340. matrix) which can be registered by the means of helper functions (e.g.
  341. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  342. @end deftypefun
  343. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  344. Register a new piece of data into the handle @var{handledst} with the
  345. same interface as the handle @var{handlesrc}.
  346. @end deftypefun
  347. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  348. This function unregisters a data handle from StarPU. If the data was
  349. automatically allocated by StarPU because the home node was -1, all
  350. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  351. is put back into the home node in the buffer that was initially registered.
  352. Using a data handle that has been unregistered from StarPU results in an
  353. undefined behaviour.
  354. @end deftypefun
  355. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  356. This is the same as starpu_data_unregister, except that StarPU does not put back
  357. a valid copy into the home node, in the buffer that was initially registered.
  358. @end deftypefun
  359. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  360. Destroy all replicates of the data handle. After data invalidation, the first
  361. access to the handle must be performed in write-only mode. Accessing an
  362. invalidated data in read-mode results in undefined behaviour.
  363. @end deftypefun
  364. @c TODO create a specific sections about user interaction with the DSM ?
  365. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  366. This function sets the write-through mask of a given data, i.e. a bitmask of
  367. nodes where the data should be always replicated after modification. It also
  368. prevents the data from being evicted from these nodes when memory gets scarse.
  369. @end deftypefun
  370. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  371. Issue a prefetch request for a given data to a given node, i.e.
  372. requests that the data be replicated to the given node, so that it is available
  373. there for tasks. If the @var{async} parameter is 0, the call will block until
  374. the transfer is achieved, else the call will return as soon as the request is
  375. scheduled (which may however have to wait for a task completion).
  376. @end deftypefun
  377. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  378. Return the handle corresponding to the data pointed to by the @var{ptr}
  379. host pointer.
  380. @end deftypefun
  381. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  382. Explicitly ask StarPU to allocate room for a piece of data on the specified
  383. memory node.
  384. @end deftypefun
  385. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  386. Query the status of the handle on the specified memory node.
  387. @end deftypefun
  388. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  389. This function allows to specify that a piece of data can be discarded
  390. without impacting the application.
  391. @end deftypefun
  392. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  393. This sets the codelets to be used for the @var{handle} when it is accessed in
  394. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  395. codelet, and reduction between per-worker buffers will be done with the
  396. @var{redux_cl} codelet.
  397. @end deftypefun
  398. @node Access registered data from the application
  399. @subsection Access registered data from the application
  400. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  401. The application must call this function prior to accessing registered data from
  402. main memory outside tasks. StarPU ensures that the application will get an
  403. up-to-date copy of the data in main memory located where the data was
  404. originally registered, and that all concurrent accesses (e.g. from tasks) will
  405. be consistent with the access mode specified in the @var{mode} argument.
  406. @code{starpu_data_release} must be called once the application does not need to
  407. access the piece of data anymore. Note that implicit data
  408. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  409. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  410. the data, unless that they have not been disabled explictly by calling
  411. @code{starpu_data_set_default_sequential_consistency_flag} or
  412. @code{starpu_data_set_sequential_consistency_flag}.
  413. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  414. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  415. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  416. @end deftypefun
  417. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  418. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  419. @code{starpu_data_release}. When the data specified in the first argument is
  420. available in the appropriate access mode, the callback function is executed.
  421. The application may access the requested data during the execution of this
  422. callback. The callback function must call @code{starpu_data_release} once the
  423. application does not need to access the piece of data anymore.
  424. Note that implicit data dependencies are also enforced by
  425. @code{starpu_data_acquire_cb} in case they are enabled.
  426. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  427. be called from task callbacks. Upon successful completion, this function
  428. returns 0.
  429. @end deftypefun
  430. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  431. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  432. except that the code to be executed in a callback is directly provided as a
  433. macro parameter, and the data handle is automatically released after it. This
  434. permits to easily execute code which depends on the value of some registered
  435. data. This is non-blocking too and may be called from task callbacks.
  436. @end defmac
  437. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  438. This function releases the piece of data acquired by the application either by
  439. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  440. @end deftypefun
  441. @node Data Interfaces
  442. @section Data Interfaces
  443. @menu
  444. * Registering Data::
  445. * Accessing Data Interfaces::
  446. @end menu
  447. @node Registering Data
  448. @subsection Registering Data
  449. There are several ways to register a memory region so that it can be managed by
  450. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  451. matrices as well as BCSR and CSR sparse matrices.
  452. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  453. Register a void interface. There is no data really associated to that
  454. interface, but it may be used as a synchronization mechanism. It also
  455. permits to express an abstract piece of data that is managed by the
  456. application internally: this makes it possible to forbid the
  457. concurrent execution of different tasks accessing the same "void" data
  458. in read-write concurrently.
  459. @end deftypefun
  460. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  461. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  462. typically a scalar, and initialize @var{handle} to represent this data
  463. item.
  464. @cartouche
  465. @smallexample
  466. float var;
  467. starpu_data_handle_t var_handle;
  468. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  469. @end smallexample
  470. @end cartouche
  471. @end deftypefun
  472. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  473. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  474. @var{ptr} and initialize @var{handle} to represent it.
  475. @cartouche
  476. @smallexample
  477. float vector[NX];
  478. starpu_data_handle_t vector_handle;
  479. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  480. sizeof(vector[0]));
  481. @end smallexample
  482. @end cartouche
  483. @end deftypefun
  484. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  485. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  486. pointed by @var{ptr} and initialize @var{handle} to represent it.
  487. @var{ld} specifies the number of elements between rows.
  488. a value greater than @var{nx} adds padding, which can be useful for
  489. alignment purposes.
  490. @cartouche
  491. @smallexample
  492. float *matrix;
  493. starpu_data_handle_t matrix_handle;
  494. matrix = (float*)malloc(width * height * sizeof(float));
  495. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  496. width, width, height, sizeof(float));
  497. @end smallexample
  498. @end cartouche
  499. @end deftypefun
  500. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  501. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  502. elements pointed by @var{ptr} and initialize @var{handle} to represent
  503. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  504. between rows and between z planes.
  505. @cartouche
  506. @smallexample
  507. float *block;
  508. starpu_data_handle_t block_handle;
  509. block = (float*)malloc(nx*ny*nz*sizeof(float));
  510. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  511. nx, nx*ny, nx, ny, nz, sizeof(float));
  512. @end smallexample
  513. @end cartouche
  514. @end deftypefun
  515. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  516. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  517. Compressed Sparse Row Representation) sparse matrix interface.
  518. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  519. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  520. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  521. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  522. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  523. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  524. or 1).
  525. @end deftypefun
  526. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  527. This variant of @code{starpu_data_register} uses the CSR (Compressed
  528. Sparse Row Representation) sparse matrix interface.
  529. TODO
  530. @end deftypefun
  531. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  532. Return the interface associated with @var{handle} on @var{memory_node}.
  533. @end deftypefun
  534. @node Accessing Data Interfaces
  535. @subsection Accessing Data Interfaces
  536. Each data interface is provided with a set of field access functions.
  537. The ones using a @code{void *} parameter aimed to be used in codelet
  538. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  539. @deftp {Data Type} {enum starpu_data_interface_id}
  540. The different values are:
  541. @table @asis
  542. @item @code{STARPU_MATRIX_INTERFACE_ID}
  543. @item @code{STARPU_BLOCK_INTERFACE_ID}
  544. @item @code{STARPU_VECTOR_INTERFACE_ID}
  545. @item @code{STARPU_CSR_INTERFACE_ID}
  546. @item @code{STARPU_BCSR_INTERFACE_ID}
  547. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  548. @item @code{STARPU_VOID_INTERFACE_ID}
  549. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  550. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  551. @end table
  552. @end deftp
  553. @menu
  554. * Accessing Handle::
  555. * Accessing Variable Data Interfaces::
  556. * Accessing Vector Data Interfaces::
  557. * Accessing Matrix Data Interfaces::
  558. * Accessing Block Data Interfaces::
  559. * Accessing BCSR Data Interfaces::
  560. * Accessing CSR Data Interfaces::
  561. @end menu
  562. @node Accessing Handle
  563. @subsubsection Handle
  564. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  565. Return the pointer associated with @var{handle} on node @var{node} or
  566. @code{NULL} if @var{handle}'s interface does not support this
  567. operation or data for this handle is not allocated on that node.
  568. @end deftypefun
  569. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  570. Return the local pointer associated with @var{handle} or @code{NULL}
  571. if @var{handle}'s interface does not have data allocated locally
  572. @end deftypefun
  573. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  574. Return the unique identifier of the interface associated with the given @var{handle}.
  575. @end deftypefun
  576. @node Accessing Variable Data Interfaces
  577. @subsubsection Variable Data Interfaces
  578. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  579. Return the size of the variable designated by @var{handle}.
  580. @end deftypefun
  581. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  582. Return a pointer to the variable designated by @var{handle}.
  583. @end deftypefun
  584. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  585. Return a pointer to the variable designated by @var{interface}.
  586. @end defmac
  587. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  588. Return the size of the variable designated by @var{interface}.
  589. @end defmac
  590. @node Accessing Vector Data Interfaces
  591. @subsubsection Vector Data Interfaces
  592. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  593. Return the number of elements registered into the array designated by @var{handle}.
  594. @end deftypefun
  595. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  596. Return the size of each element of the array designated by @var{handle}.
  597. @end deftypefun
  598. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  599. Return the local pointer associated with @var{handle}.
  600. @end deftypefun
  601. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  602. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  603. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  604. @end defmac
  605. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  606. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  607. documented below has to be used in addition to this.
  608. @end defmac
  609. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  610. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  611. @end defmac
  612. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  613. Return the number of elements registered into the array designated by @var{interface}.
  614. @end defmac
  615. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  616. Return the size of each element of the array designated by @var{interface}.
  617. @end defmac
  618. @node Accessing Matrix Data Interfaces
  619. @subsubsection Matrix Data Interfaces
  620. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  621. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  622. @end deftypefun
  623. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  624. Return the number of elements on the y-axis of the matrix designated by
  625. @var{handle}.
  626. @end deftypefun
  627. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  628. Return the number of elements between each row of the matrix designated by
  629. @var{handle}. Maybe be equal to nx when there is no padding.
  630. @end deftypefun
  631. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  632. Return the local pointer associated with @var{handle}.
  633. @end deftypefun
  634. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  635. Return the size of the elements registered into the matrix designated by
  636. @var{handle}.
  637. @end deftypefun
  638. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  639. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  640. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  641. used instead.
  642. @end defmac
  643. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  644. Return a device handle for the matrix designated by @var{interface}, to be used
  645. on OpenCL. The offset documented below has to be used in addition to this.
  646. @end defmac
  647. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  648. Return the offset in the matrix designated by @var{interface}, to be used with
  649. the device handle.
  650. @end defmac
  651. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  652. Return the number of elements on the x-axis of the matrix designated by
  653. @var{interface}.
  654. @end defmac
  655. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  656. Return the number of elements on the y-axis of the matrix designated by
  657. @var{interface}.
  658. @end defmac
  659. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  660. Return the number of elements between each row of the matrix designated by
  661. @var{interface}. May be equal to nx when there is no padding.
  662. @end defmac
  663. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  664. Return the size of the elements registered into the matrix designated by
  665. @var{interface}.
  666. @end defmac
  667. @node Accessing Block Data Interfaces
  668. @subsubsection Block Data Interfaces
  669. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  670. Return the number of elements on the x-axis of the block designated by @var{handle}.
  671. @end deftypefun
  672. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  673. Return the number of elements on the y-axis of the block designated by @var{handle}.
  674. @end deftypefun
  675. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  676. Return the number of elements on the z-axis of the block designated by @var{handle}.
  677. @end deftypefun
  678. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  679. Return the number of elements between each row of the block designated by
  680. @var{handle}, in the format of the current memory node.
  681. @end deftypefun
  682. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  683. Return the number of elements between each z plane of the block designated by
  684. @var{handle}, in the format of the current memory node.
  685. @end deftypefun
  686. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  687. Return the local pointer associated with @var{handle}.
  688. @end deftypefun
  689. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  690. Return the size of the elements of the block designated by @var{handle}.
  691. @end deftypefun
  692. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  693. Return a pointer to the block designated by @var{interface}.
  694. @end defmac
  695. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  696. Return a device handle for the block designated by @var{interface}, to be used
  697. on OpenCL. The offset document below has to be used in addition to this.
  698. @end defmac
  699. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  700. Return the offset in the block designated by @var{interface}, to be used with
  701. the device handle.
  702. @end defmac
  703. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  704. Return the number of elements on the x-axis of the block designated by @var{handle}.
  705. @end defmac
  706. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  707. Return the number of elements on the y-axis of the block designated by @var{handle}.
  708. @end defmac
  709. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  710. Return the number of elements on the z-axis of the block designated by @var{handle}.
  711. @end defmac
  712. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  713. Return the number of elements between each row of the block designated by
  714. @var{interface}. May be equal to nx when there is no padding.
  715. @end defmac
  716. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  717. Return the number of elements between each z plane of the block designated by
  718. @var{interface}. May be equal to nx*ny when there is no padding.
  719. @end defmac
  720. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  721. Return the size of the elements of the matrix designated by @var{interface}.
  722. @end defmac
  723. @node Accessing BCSR Data Interfaces
  724. @subsubsection BCSR Data Interfaces
  725. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  726. Return the number of non-zero elements in the matrix designated by @var{handle}.
  727. @end deftypefun
  728. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  729. Return the number of rows (in terms of blocks of size r*c) in the matrix
  730. designated by @var{handle}.
  731. @end deftypefun
  732. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  733. Return the index at which all arrays (the column indexes, the row pointers...)
  734. of the matrix desginated by @var{handle} start.
  735. @end deftypefun
  736. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  737. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  738. @end deftypefun
  739. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  740. Return a pointer to the column index, which holds the positions of the non-zero
  741. entries in the matrix designated by @var{handle}.
  742. @end deftypefun
  743. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  744. Return the row pointer array of the matrix designated by @var{handle}.
  745. @end deftypefun
  746. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  747. Return the number of rows in a block.
  748. @end deftypefun
  749. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  750. Return the numberof columns in a block.
  751. @end deftypefun
  752. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  753. Return the size of the elements in the matrix designated by @var{handle}.
  754. @end deftypefun
  755. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  756. Return the number of non-zero values in the matrix designated by @var{interface}.
  757. @end defmac
  758. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  759. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  760. @end defmac
  761. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  762. Return a pointer to the column index of the matrix designated by @var{interface}.
  763. @end defmac
  764. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  765. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  766. @end defmac
  767. @node Accessing CSR Data Interfaces
  768. @subsubsection CSR Data Interfaces
  769. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  770. Return the number of non-zero values in the matrix designated by @var{handle}.
  771. @end deftypefun
  772. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  773. Return the size of the row pointer array of the matrix designated by @var{handle}.
  774. @end deftypefun
  775. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  776. Return the index at which all arrays (the column indexes, the row pointers...)
  777. of the matrix designated by @var{handle} start.
  778. @end deftypefun
  779. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  780. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  781. @end deftypefun
  782. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  783. Return a local pointer to the column index of the matrix designated by @var{handle}.
  784. @end deftypefun
  785. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  786. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  787. @end deftypefun
  788. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  789. Return the size of the elements registered into the matrix designated by @var{handle}.
  790. @end deftypefun
  791. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  792. Return the number of non-zero values in the matrix designated by @var{interface}.
  793. @end defmac
  794. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  795. Return the size of the row pointer array of the matrix designated by @var{interface}.
  796. @end defmac
  797. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  798. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  799. @end defmac
  800. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  801. Return a pointer to the column index of the matrix designated by @var{interface}.
  802. @end defmac
  803. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  804. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  805. @end defmac
  806. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  807. Return the index at which all arrays (the column indexes, the row pointers...)
  808. of the @var{interface} start.
  809. @end defmac
  810. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  811. Return the size of the elements registered into the matrix designated by @var{interface}.
  812. @end defmac
  813. @node Data Partition
  814. @section Data Partition
  815. @menu
  816. * Basic API::
  817. * Predefined filter functions::
  818. @end menu
  819. @node Basic API
  820. @subsection Basic API
  821. @deftp {Data Type} {struct starpu_data_filter}
  822. The filter structure describes a data partitioning operation, to be given to the
  823. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  824. for an example. The different fields are:
  825. @table @asis
  826. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  827. This function fills the @code{child_interface} structure with interface
  828. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  829. @item @code{unsigned nchildren}
  830. This is the number of parts to partition the data into.
  831. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  832. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  833. children depends on the actual data (e.g. the number of blocks in a sparse
  834. matrix).
  835. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  836. In case the resulting children use a different data interface, this function
  837. returns which interface is used by child number @code{id}.
  838. @item @code{unsigned filter_arg}
  839. Allow to define an additional parameter for the filter function.
  840. @item @code{void *filter_arg_ptr}
  841. Allow to define an additional pointer parameter for the filter
  842. function, such as the sizes of the different parts.
  843. @end table
  844. @end deftp
  845. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  846. @anchor{starpu_data_partition}
  847. This requests partitioning one StarPU data @var{initial_handle} into several
  848. subdata according to the filter @var{f}, as shown in the following example:
  849. @cartouche
  850. @smallexample
  851. struct starpu_data_filter f = @{
  852. .filter_func = starpu_vertical_block_filter_func,
  853. .nchildren = nslicesx,
  854. .get_nchildren = NULL,
  855. .get_child_ops = NULL
  856. @};
  857. starpu_data_partition(A_handle, &f);
  858. @end smallexample
  859. @end cartouche
  860. @end deftypefun
  861. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  862. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  863. collected back into one big piece in the @var{gathering_node} (usually 0).
  864. @cartouche
  865. @smallexample
  866. starpu_data_unpartition(A_handle, 0);
  867. @end smallexample
  868. @end cartouche
  869. @end deftypefun
  870. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  871. This function returns the number of children.
  872. @end deftypefun
  873. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  874. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  875. @end deftypefun
  876. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  877. After partitioning a StarPU data by applying a filter,
  878. @code{starpu_data_get_sub_data} can be used to get handles for each of
  879. the data portions. @var{root_data} is the parent data that was
  880. partitioned. @var{depth} is the number of filters to traverse (in
  881. case several filters have been applied, to e.g. partition in row
  882. blocks, and then in column blocks), and the subsequent
  883. parameters are the indexes. The function returns a handle to the
  884. subdata.
  885. @cartouche
  886. @smallexample
  887. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  888. @end smallexample
  889. @end cartouche
  890. @end deftypefun
  891. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  892. This function is similar to @code{starpu_data_get_sub_data} but uses a
  893. va_list for the parameter list.
  894. @end deftypefun
  895. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  896. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  897. recursively. @var{nfilters} pointers to variables of the type
  898. starpu_data_filter should be given.
  899. @end deftypefun
  900. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  901. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  902. recursively. It uses a va_list of pointers to variables of the typer
  903. starpu_data_filter.
  904. @end deftypefun
  905. @node Predefined filter functions
  906. @subsection Predefined filter functions
  907. @menu
  908. * Partitioning BCSR Data::
  909. * Partitioning BLAS interface::
  910. * Partitioning Vector Data::
  911. * Partitioning Block Data::
  912. @end menu
  913. This section gives a partial list of the predefined partitioning functions.
  914. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  915. list can be found in @code{starpu_data_filters.h} .
  916. @node Partitioning BCSR Data
  917. @subsubsection Partitioning BCSR Data
  918. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  919. This partitions a block-sparse matrix into dense matrices.
  920. @end deftypefun
  921. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  922. This partitions a block-sparse matrix into vertical block-sparse matrices.
  923. @end deftypefun
  924. @node Partitioning BLAS interface
  925. @subsubsection Partitioning BLAS interface
  926. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  927. This partitions a dense Matrix into horizontal blocks.
  928. @end deftypefun
  929. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  930. This partitions a dense Matrix into vertical blocks.
  931. @end deftypefun
  932. @node Partitioning Vector Data
  933. @subsubsection Partitioning Vector Data
  934. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  935. Return in @code{*@var{child_interface}} the @var{id}th element of the
  936. vector represented by @var{father_interface} once partitioned in
  937. @var{nparts} chunks of equal size.
  938. @end deftypefun
  939. @deftypefun void starpu_block_shadow_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  940. Return in @code{*@var{child_interface}} the @var{id}th element of the
  941. vector represented by @var{father_interface} once partitioned in
  942. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}
  943. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  944. IMPORTANT: This can only be used for read-only access, as no coherency is
  945. enforced for the shadowed parts.
  946. A usage example is available in examples/filters/shadow.c
  947. @end deftypefun
  948. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  949. Return in @code{*@var{child_interface}} the @var{id}th element of the
  950. vector represented by @var{father_interface} once partitioned into
  951. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  952. @code{*@var{f}}.
  953. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  954. @code{uint32_t} elements, each of which specifies the number of elements
  955. in each chunk of the partition.
  956. @end deftypefun
  957. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  958. Return in @code{*@var{child_interface}} the @var{id}th element of the
  959. vector represented by @var{father_interface} once partitioned in two
  960. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  961. @code{0} or @code{1}.
  962. @end deftypefun
  963. @node Partitioning Block Data
  964. @subsubsection Partitioning Block Data
  965. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  966. This partitions a 3D matrix along the X axis.
  967. @end deftypefun
  968. @node Codelets and Tasks
  969. @section Codelets and Tasks
  970. This section describes the interface to manipulate codelets and tasks.
  971. @deftp {Data Type} {enum starpu_codelet_type}
  972. Describes the type of parallel task. The different values are:
  973. @table @asis
  974. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  975. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  976. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  977. @code{starpu_combined_worker_get_rank} to distribute the work
  978. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  979. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  980. determine how many threads should be started.
  981. @end table
  982. See @ref{Parallel Tasks} for details.
  983. @end deftp
  984. @defmac STARPU_CPU
  985. This macro is used when setting the field @code{where} of a @code{struct
  986. starpu_codelet} to specify the codelet may be executed on a CPU
  987. processing unit.
  988. @end defmac
  989. @defmac STARPU_CUDA
  990. This macro is used when setting the field @code{where} of a @code{struct
  991. starpu_codelet} to specify the codelet may be executed on a CUDA
  992. processing unit.
  993. @end defmac
  994. @defmac STARPU_SPU
  995. This macro is used when setting the field @code{where} of a @code{struct
  996. starpu_codelet} to specify the codelet may be executed on a SPU
  997. processing unit.
  998. @end defmac
  999. @defmac STARPU_GORDON
  1000. This macro is used when setting the field @code{where} of a @code{struct
  1001. starpu_codelet} to specify the codelet may be executed on a Cell
  1002. processing unit.
  1003. @end defmac
  1004. @defmac STARPU_OPENCL
  1005. This macro is used when setting the field @code{where} of a @code{struct
  1006. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1007. processing unit.
  1008. @end defmac
  1009. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1010. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1011. with this macro indicates the codelet will have several
  1012. implementations. The use of this macro is deprecated. One should
  1013. always only define the field @code{cpu_funcs}.
  1014. @end defmac
  1015. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1016. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1017. with this macro indicates the codelet will have several
  1018. implementations. The use of this macro is deprecated. One should
  1019. always only define the field @code{cuda_funcs}.
  1020. @end defmac
  1021. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1022. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1023. with this macro indicates the codelet will have several
  1024. implementations. The use of this macro is deprecated. One should
  1025. always only define the field @code{opencl_funcs}.
  1026. @end defmac
  1027. @deftp {Data Type} {struct starpu_codelet}
  1028. The codelet structure describes a kernel that is possibly implemented on various
  1029. targets. For compatibility, make sure to initialize the whole structure to zero,
  1030. either by using explicit memset, or by letting the compiler implicitly do it in
  1031. e.g. static storage case.
  1032. @table @asis
  1033. @item @code{uint32_t where} (optional)
  1034. Indicates which types of processing units are able to execute the
  1035. codelet. The different values
  1036. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  1037. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  1038. on which types of processing units the codelet can be executed.
  1039. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1040. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  1041. indicates that it is only available on Cell SPUs. If the field is
  1042. unset, its value will be automatically set based on the availability
  1043. of the @code{XXX_funcs} fields defined below.
  1044. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1045. Defines a function which should return 1 if the worker designated by @var{workerid} can execute the @var{nimpl}th implementation of the given@var{task}, 0 otherwise.
  1046. @item @code{enum starpu_codelet_type type} (optional)
  1047. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1048. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1049. implementation is also available. See @ref{Parallel Tasks} for details.
  1050. @item @code{int max_parallelism} (optional)
  1051. If a parallel implementation is available, this denotes the maximum combined
  1052. worker size that StarPU will use to execute parallel tasks for this codelet.
  1053. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1054. This field has been made deprecated. One should use instead the
  1055. @code{cpu_funcs} field.
  1056. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1057. Is an array of function pointers to the CPU implementations of the codelet.
  1058. It must be terminated by a NULL value.
  1059. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1060. argument being the array of data managed by the data management library, and
  1061. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1062. field of the @code{starpu_task} structure.
  1063. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1064. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1065. field, it must be non-null otherwise.
  1066. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1067. This field has been made deprecated. One should use instead the
  1068. @code{cuda_funcs} field.
  1069. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1070. Is an array of function pointers to the CUDA implementations of the codelet.
  1071. It must be terminated by a NULL value.
  1072. @emph{The functions must be host-functions written in the CUDA runtime
  1073. API}. Their prototype must
  1074. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1075. If the @code{where} field is set, then the @code{cuda_funcs}
  1076. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1077. field, it must be non-null otherwise.
  1078. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1079. This field has been made deprecated. One should use instead the
  1080. @code{opencl_funcs} field.
  1081. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1082. Is an array of function pointers to the OpenCL implementations of the codelet.
  1083. It must be terminated by a NULL value.
  1084. The functions prototype must be:
  1085. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1086. If the @code{where} field is set, then the @code{opencl_funcs} field
  1087. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1088. field, it must be non-null otherwise.
  1089. @item @code{uint8_t gordon_func} (optional)
  1090. This field has been made deprecated. One should use instead the
  1091. @code{gordon_funcs} field.
  1092. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1093. Is an array of index of the Cell SPU implementations of the codelet within the
  1094. Gordon library.
  1095. It must be terminated by a NULL value.
  1096. See Gordon documentation for more details on how to register a kernel and
  1097. retrieve its index.
  1098. @item @code{unsigned nbuffers}
  1099. Specifies the number of arguments taken by the codelet. These arguments are
  1100. managed by the DSM and are accessed from the @code{void *buffers[]}
  1101. array. The constant argument passed with the @code{cl_arg} field of the
  1102. @code{starpu_task} structure is not counted in this number. This value should
  1103. not be above @code{STARPU_NMAXBUFS}.
  1104. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1105. Is an array of @code{enum starpu_access_mode}. It describes the
  1106. required access modes to the data neeeded by the codelet (e.g.
  1107. @code{STARPU_RW}). The number of entries in this array must be
  1108. specified in the @code{nbuffers} field (defined above), and should not
  1109. exceed @code{STARPU_NMAXBUFS}.
  1110. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1111. option when configuring StarPU.
  1112. @item @code{struct starpu_perfmodel *model} (optional)
  1113. This is a pointer to the task duration performance model associated to this
  1114. codelet. This optional field is ignored when set to @code{NULL} or
  1115. when its @code{symbol} field is not set.
  1116. @item @code{struct starpu_perfmodel *power_model} (optional)
  1117. This is a pointer to the task power consumption performance model associated
  1118. to this codelet. This optional field is ignored when set to
  1119. @code{NULL} or when its @code{symbol} field is not set.
  1120. In the case of parallel codelets, this has to account for all processing units
  1121. involved in the parallel execution.
  1122. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1123. Statistics collected at runtime: this is filled by StarPU and should not be
  1124. accessed directly, but for example by calling the
  1125. @code{starpu_display_codelet_stats} function (See
  1126. @ref{starpu_display_codelet_stats} for details).
  1127. @item @code{const char *name} (optional)
  1128. Define the name of the codelet. This can be useful for debugging purposes.
  1129. @end table
  1130. @end deftp
  1131. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1132. Initialize @var{cl} with default values. Codelets should preferably be
  1133. initialized statically as shown in @ref{Defining a Codelet}. However
  1134. such a initialisation is not always possible, e.g. when using C++.
  1135. @end deftypefun
  1136. @deftp {Data Type} {enum starpu_task_status}
  1137. State of a task, can be either of
  1138. @table @asis
  1139. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1140. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1141. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1142. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1143. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1144. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1145. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1146. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1147. @end table
  1148. @end deftp
  1149. @deftp {Data Type} {struct starpu_buffer_descr}
  1150. This type is used to describe a data handle along with an
  1151. access mode.
  1152. @table @asis
  1153. @item @code{starpu_data_handle_t handle} describes a data,
  1154. @item @code{enum starpu_access_mode mode} describes its access mode
  1155. @end table
  1156. @end deftp
  1157. @deftp {Data Type} {struct starpu_task}
  1158. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1159. processing units managed by StarPU. It instantiates a codelet. It can either be
  1160. allocated dynamically with the @code{starpu_task_create} method, or declared
  1161. statically. In the latter case, the programmer has to zero the
  1162. @code{starpu_task} structure and to fill the different fields properly. The
  1163. indicated default values correspond to the configuration of a task allocated
  1164. with @code{starpu_task_create}.
  1165. @table @asis
  1166. @item @code{struct starpu_codelet *cl}
  1167. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1168. describes where the kernel should be executed, and supplies the appropriate
  1169. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1170. such empty tasks can be useful for synchronization purposes.
  1171. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1172. This field has been made deprecated. One should use instead the
  1173. @code{handles} field to specify the handles to the data accessed by
  1174. the task. The access modes are now defined in the @code{mode} field of
  1175. the @code{struct starpu_codelet cl} field defined above.
  1176. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1177. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1178. to the different pieces of data accessed by the task. The number
  1179. of entries in this array must be specified in the @code{nbuffers} field of the
  1180. @code{struct starpu_codelet} structure, and should not exceed
  1181. @code{STARPU_NMAXBUFS}.
  1182. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1183. option when configuring StarPU.
  1184. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1185. The actual data pointers to the memory node where execution will happen, managed
  1186. by the DSM.
  1187. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1188. This pointer is passed to the codelet through the second argument
  1189. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1190. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1191. argument.
  1192. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1193. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1194. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1195. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1196. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1197. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1198. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1199. codelets, where the @code{cl_arg} pointer is given as such.
  1200. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1201. This is a function pointer of prototype @code{void (*f)(void *)} which
  1202. specifies a possible callback. If this pointer is non-null, the callback
  1203. function is executed @emph{on the host} after the execution of the task. Tasks
  1204. which depend on it might already be executing. The callback is passed the
  1205. value contained in the @code{callback_arg} field. No callback is executed if the
  1206. field is set to @code{NULL}.
  1207. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1208. This is the pointer passed to the callback function. This field is ignored if
  1209. the @code{callback_func} is set to @code{NULL}.
  1210. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1211. If set, this flag indicates that the task should be associated with the tag
  1212. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1213. with the task and to express task dependencies easily.
  1214. @item @code{starpu_tag_t tag_id}
  1215. This fields contains the tag associated to the task if the @code{use_tag} field
  1216. was set, it is ignored otherwise.
  1217. @item @code{unsigned synchronous}
  1218. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1219. returns only when the task has been executed (or if no worker is able to
  1220. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1221. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1222. This field indicates a level of priority for the task. This is an integer value
  1223. that must be set between the return values of the
  1224. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1225. and that of the @code{starpu_sched_get_max_priority} for the most important
  1226. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1227. are provided for convenience and respectively returns value of
  1228. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1229. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1230. order to allow static task initialization. Scheduling strategies that take
  1231. priorities into account can use this parameter to take better scheduling
  1232. decisions, but the scheduling policy may also ignore it.
  1233. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1234. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1235. task to the worker specified by the @code{workerid} field.
  1236. @item @code{unsigned workerid} (optional)
  1237. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1238. which is the identifier of the worker that should process this task (as
  1239. returned by @code{starpu_worker_get_id}). This field is ignored if
  1240. @code{execute_on_a_specific_worker} field is set to 0.
  1241. @item @code{starpu_task_bundle_t bundle} (optional)
  1242. The bundle that includes this task. If no bundle is used, this should be NULL.
  1243. @item @code{int detach} (optional) (default: @code{1})
  1244. If this flag is set, it is not possible to synchronize with the task
  1245. by the means of @code{starpu_task_wait} later on. Internal data structures
  1246. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1247. flag is not set.
  1248. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1249. If this flag is set, the task structure will automatically be freed, either
  1250. after the execution of the callback if the task is detached, or during
  1251. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1252. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1253. called explicitly. Setting this flag for a statically allocated task structure
  1254. will result in undefined behaviour. The flag is set to 1 when the task is
  1255. created by calling @code{starpu_task_create()}. Note that
  1256. @code{starpu_task_wait_for_all} will not free any task.
  1257. @item @code{int regenerate} (optional)
  1258. If this flag is set, the task will be re-submitted to StarPU once it has been
  1259. executed. This flag must not be set if the destroy flag is set too.
  1260. @item @code{enum starpu_task_status status} (optional)
  1261. Current state of the task.
  1262. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1263. Profiling information for the task.
  1264. @item @code{double predicted} (output field)
  1265. Predicted duration of the task. This field is only set if the scheduling
  1266. strategy used performance models.
  1267. @item @code{double predicted_transfer} (optional)
  1268. Predicted data transfer duration for the task in microseconds. This field is
  1269. only valid if the scheduling strategy uses performance models.
  1270. @item @code{struct starpu_task *prev}
  1271. A pointer to the previous task. This should only be used by StarPU.
  1272. @item @code{struct starpu_task *next}
  1273. A pointer to the next task. This should only be used by StarPU.
  1274. @item @code{unsigned int mf_skip}
  1275. This is only used for tasks that use multiformat handle. This should only be
  1276. used by StarPU.
  1277. @item @code{void *starpu_private}
  1278. This is private to StarPU, do not modify. If the task is allocated by hand
  1279. (without starpu_task_create), this field should be set to NULL.
  1280. @item @code{int magic}
  1281. This field is set when initializing a task. It prevents a task from being
  1282. submitted if it has not been properly initialized.
  1283. @end table
  1284. @end deftp
  1285. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1286. Initialize @var{task} with default values. This function is implicitly
  1287. called by @code{starpu_task_create}. By default, tasks initialized with
  1288. @code{starpu_task_init} must be deinitialized explicitly with
  1289. @code{starpu_task_deinit}. Tasks can also be initialized statically,
  1290. using @code{STARPU_TASK_INITIALIZER} defined below.
  1291. @end deftypefun
  1292. @defmac STARPU_TASK_INITIALIZER
  1293. It is possible to initialize statically allocated tasks with this
  1294. value. This is equivalent to initializing a starpu_task structure with
  1295. the @code{starpu_task_init} function defined above.
  1296. @end defmac
  1297. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1298. Allocate a task structure and initialize it with default values. Tasks
  1299. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1300. task is terminated. This means that the task pointer can not be used any more
  1301. once the task is submitted, since it can be executed at any time (unless
  1302. dependencies make it wait) and thus freed at any time.
  1303. If the destroy flag is explicitly unset, the resources used
  1304. by the task have to be freed by calling
  1305. @code{starpu_task_destroy}.
  1306. @end deftypefun
  1307. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1308. Release all the structures automatically allocated to execute @var{task}, but
  1309. not the task structure itself. It is thus useful for statically allocated tasks
  1310. for instance. It is called automatically by @code{starpu_task_destroy}. It
  1311. has to be called only after explicitly waiting for the task or after
  1312. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1313. still manipulates the task after calling the callback).
  1314. @end deftypefun
  1315. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1316. Free the resource allocated during @code{starpu_task_create} and
  1317. associated with @var{task}. This function is already called automatically
  1318. after the execution of a task when the @code{destroy} flag of the
  1319. @code{starpu_task} structure is set, which is the default for tasks created by
  1320. @code{starpu_task_create}. Calling this function on a statically allocated task
  1321. results in an undefined behaviour.
  1322. @end deftypefun
  1323. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1324. This function blocks until @var{task} has been executed. It is not possible to
  1325. synchronize with a task more than once. It is not possible to wait for
  1326. synchronous or detached tasks.
  1327. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1328. indicates that the specified task was either synchronous or detached.
  1329. @end deftypefun
  1330. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1331. This function submits @var{task} to StarPU. Calling this function does
  1332. not mean that the task will be executed immediately as there can be data or task
  1333. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1334. scheduling this task with respect to such dependencies.
  1335. This function returns immediately if the @code{synchronous} field of the
  1336. @code{starpu_task} structure was set to 0, and block until the termination of
  1337. the task otherwise. It is also possible to synchronize the application with
  1338. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1339. function for instance.
  1340. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1341. means that there is no worker able to process this task (e.g. there is no GPU
  1342. available and this task is only implemented for CUDA devices).
  1343. starpu_task_submit() can be called from anywhere, including codelet
  1344. functions and callbacks, provided that the @code{synchronous} field of the
  1345. @code{starpu_task} structure is left to 0.
  1346. @end deftypefun
  1347. @deftypefun int starpu_task_wait_for_all (void)
  1348. This function blocks until all the tasks that were submitted are terminated. It
  1349. does not destroy these tasks.
  1350. @end deftypefun
  1351. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1352. This function returns the task currently executed by the worker, or
  1353. NULL if it is called either from a thread that is not a task or simply
  1354. because there is no task being executed at the moment.
  1355. @end deftypefun
  1356. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1357. @anchor{starpu_display_codelet_stats}
  1358. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1359. @end deftypefun
  1360. @deftypefun int starpu_task_wait_for_no_ready (void)
  1361. This function waits until there is no more ready task.
  1362. @end deftypefun
  1363. @c Callbacks: what can we put in callbacks ?
  1364. @node Explicit Dependencies
  1365. @section Explicit Dependencies
  1366. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1367. Declare task dependencies between a @var{task} and an array of tasks of length
  1368. @var{ndeps}. This function must be called prior to the submission of the task,
  1369. but it may called after the submission or the execution of the tasks in the
  1370. array, provided the tasks are still valid (ie. they were not automatically
  1371. destroyed). Calling this function on a task that was already submitted or with
  1372. an entry of @var{task_array} that is not a valid task anymore results in an
  1373. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1374. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1375. same task, in this case, the dependencies are added. It is possible to have
  1376. redundancy in the task dependencies.
  1377. @end deftypefun
  1378. @deftp {Data Type} {starpu_tag_t}
  1379. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1380. dependencies between tasks by the means of those tags. To do so, fill the
  1381. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1382. be arbitrary) and set the @code{use_tag} field to 1.
  1383. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1384. not be started until the tasks which holds the declared dependency tags are
  1385. completed.
  1386. @end deftp
  1387. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1388. Specify the dependencies of the task identified by tag @var{id}. The first
  1389. argument specifies the tag which is configured, the second argument gives the
  1390. number of tag(s) on which @var{id} depends. The following arguments are the
  1391. tags which have to be terminated to unlock the task.
  1392. This function must be called before the associated task is submitted to StarPU
  1393. with @code{starpu_task_submit}.
  1394. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1395. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1396. typically need to be explicitly casted. Using the
  1397. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1398. @cartouche
  1399. @smallexample
  1400. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1401. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1402. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1403. @end smallexample
  1404. @end cartouche
  1405. @end deftypefun
  1406. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1407. This function is similar to @code{starpu_tag_declare_deps}, except
  1408. that its does not take a variable number of arguments but an array of
  1409. tags of size @var{ndeps}.
  1410. @cartouche
  1411. @smallexample
  1412. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1413. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1414. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1415. @end smallexample
  1416. @end cartouche
  1417. @end deftypefun
  1418. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1419. This function blocks until the task associated to tag @var{id} has been
  1420. executed. This is a blocking call which must therefore not be called within
  1421. tasks or callbacks, but only from the application directly. It is possible to
  1422. synchronize with the same tag multiple times, as long as the
  1423. @code{starpu_tag_remove} function is not called. Note that it is still
  1424. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1425. data structure was freed (e.g. if the @code{destroy} flag of the
  1426. @code{starpu_task} was enabled).
  1427. @end deftypefun
  1428. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1429. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1430. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1431. terminated.
  1432. @end deftypefun
  1433. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1434. This function can be used to clear the "already notified" status
  1435. of a tag which is not associated with a task. Before that, calling
  1436. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1437. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1438. successors.
  1439. @end deftypefun
  1440. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1441. This function releases the resources associated to tag @var{id}. It can be
  1442. called once the corresponding task has been executed and when there is
  1443. no other tag that depend on this tag anymore.
  1444. @end deftypefun
  1445. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1446. This function explicitly unlocks tag @var{id}. It may be useful in the
  1447. case of applications which execute part of their computation outside StarPU
  1448. tasks (e.g. third-party libraries). It is also provided as a
  1449. convenient tool for the programmer, for instance to entirely construct the task
  1450. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1451. called several times on the same tag, notification will be done only on first
  1452. call, thus implementing "OR" dependencies, until the tag is restarted using
  1453. @code{starpu_tag_restart}.
  1454. @end deftypefun
  1455. @node Implicit Data Dependencies
  1456. @section Implicit Data Dependencies
  1457. In this section, we describe how StarPU makes it possible to insert implicit
  1458. task dependencies in order to enforce sequential data consistency. When this
  1459. data consistency is enabled on a specific data handle, any data access will
  1460. appear as sequentially consistent from the application. For instance, if the
  1461. application submits two tasks that access the same piece of data in read-only
  1462. mode, and then a third task that access it in write mode, dependencies will be
  1463. added between the two first tasks and the third one. Implicit data dependencies
  1464. are also inserted in the case of data accesses from the application.
  1465. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1466. Set the default sequential consistency flag. If a non-zero value is passed, a
  1467. sequential data consistency will be enforced for all handles registered after
  1468. this function call, otherwise it is disabled. By default, StarPU enables
  1469. sequential data consistency. It is also possible to select the data consistency
  1470. mode of a specific data handle with the
  1471. @code{starpu_data_set_sequential_consistency_flag} function.
  1472. @end deftypefun
  1473. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1474. Return the default sequential consistency flag
  1475. @end deftypefun
  1476. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1477. Sets the data consistency mode associated to a data handle. The consistency
  1478. mode set using this function has the priority over the default mode which can
  1479. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1480. @end deftypefun
  1481. @node Performance Model API
  1482. @section Performance Model API
  1483. @deftp {Data Type} {enum starpu_perf_archtype}
  1484. Enumerates the various types of architectures.
  1485. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1486. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1487. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1488. @table @asis
  1489. @item @code{STARPU_CPU_DEFAULT}
  1490. @item @code{STARPU_CUDA_DEFAULT}
  1491. @item @code{STARPU_OPENCL_DEFAULT}
  1492. @item @code{STARPU_GORDON_DEFAULT}
  1493. @end table
  1494. @end deftp
  1495. @deftp {Data Type} {enum starpu_perfmodel_type}
  1496. The possible values are:
  1497. @table @asis
  1498. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1499. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1500. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1501. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1502. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1503. @end table
  1504. @end deftp
  1505. @deftp {Data Type} {struct starpu_perfmodel}
  1506. @anchor{struct starpu_perfmodel}
  1507. contains all information about a performance model. At least the
  1508. @code{type} and @code{symbol} fields have to be filled when defining a
  1509. performance model for a codelet. For compatibility, make sure to initialize the
  1510. whole structure to zero, either by using explicit memset, or by letting the
  1511. compiler implicitly do it in e.g. static storage case.
  1512. If not provided, other fields have to be zero.
  1513. @table @asis
  1514. @item @code{type}
  1515. is the type of performance model @code{enum starpu_perfmodel_type}:
  1516. @code{STARPU_HISTORY_BASED},
  1517. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1518. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1519. @code{per_arch} has to be filled with functions which return the cost in
  1520. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1521. a function that returns the cost in micro-seconds on a CPU, timing on other
  1522. archs will be determined by multiplying by an arch-specific factor.
  1523. @item @code{const char *symbol}
  1524. is the symbol name for the performance model, which will be used as
  1525. file name to store the model. It must be set otherwise the model will
  1526. be ignored.
  1527. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1528. This field is deprecated. Use instead the @code{cost_function} field.
  1529. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1530. Used by @code{STARPU_COMMON}: takes a task and
  1531. implementation number, and must return a task duration estimation in micro-seconds.
  1532. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1533. Used by @code{STARPU_HISTORY_BASED} and
  1534. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1535. implementation number, and returns the size to be used as index for
  1536. history and regression.
  1537. @item @code{struct starpu_per_arch_perfmodel per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1538. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1539. starpu_per_arch_perfmodel} structures.
  1540. @item @code{unsigned is_loaded}
  1541. Whether the performance model is already loaded from the disk.
  1542. @item @code{unsigned benchmarking}
  1543. Whether the performance model is still being calibrated.
  1544. @item @code{pthread_rwlock_t model_rwlock}
  1545. Lock to protect concurrency between loading from disk (W), updating the values
  1546. (W), and making a performance estimation (R).
  1547. @end table
  1548. @end deftp
  1549. @deftp {Data Type} {struct starpu_regression_model}
  1550. @table @asis
  1551. @item @code{double sumlny} sum of ln(measured)
  1552. @item @code{double sumlnx} sum of ln(size)
  1553. @item @code{double sumlnx2} sum of ln(size)^2
  1554. @item @code{unsigned long minx} minimum size
  1555. @item @code{unsigned long maxx} maximum size
  1556. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1557. @item @code{double alpha} estimated = alpha * size ^ beta
  1558. @item @code{double beta}
  1559. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1560. @item @code{double a, b, c} estimaed = a size ^b + c
  1561. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1562. @item @code{unsigned nsample} number of sample values for non-linear regression
  1563. @end table
  1564. @end deftp
  1565. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1566. contains information about the performance model of a given arch.
  1567. @table @asis
  1568. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1569. This field is deprecated. Use instead the @code{cost_function} field.
  1570. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1571. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1572. target arch and implementation number (as mere conveniency, since the array
  1573. is already indexed by these), and must return a task duration estimation in
  1574. micro-seconds.
  1575. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1576. starpu_perf_archtype arch, unsigned nimpl)}
  1577. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1578. case it depends on the architecture-specific implementation.
  1579. @item @code{struct starpu_htbl32_node *history}
  1580. The history of performance measurements.
  1581. @item @code{struct starpu_history_list *list}
  1582. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1583. records all execution history measures.
  1584. @item @code{struct starpu_regression_model regression}
  1585. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1586. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1587. regression.
  1588. @end table
  1589. @end deftp
  1590. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1591. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1592. @end deftypefun
  1593. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1594. returns the path to the debugging information for the performance model.
  1595. @end deftypefun
  1596. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1597. returns the architecture name for @var{arch}.
  1598. @end deftypefun
  1599. @deftypefun void starpu_force_bus_sampling (void)
  1600. forces sampling the bus performance model again.
  1601. @end deftypefun
  1602. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1603. returns the architecture type of a given worker.
  1604. @end deftypefun
  1605. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1606. prints a list of all performance models on @var{output}.
  1607. @end deftypefun
  1608. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1609. prints a matrix of bus bandwidths on @var{f}.
  1610. @end deftypefun
  1611. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1612. prints the affinity devices on @var{f}.
  1613. @end deftypefun
  1614. @node Profiling API
  1615. @section Profiling API
  1616. @deftypefun int starpu_profiling_status_set (int @var{status})
  1617. Thie function sets the profiling status. Profiling is activated by passing
  1618. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1619. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1620. resets all profiling measurements. When profiling is enabled, the
  1621. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1622. to a valid @code{struct starpu_task_profiling_info} structure containing
  1623. information about the execution of the task.
  1624. Negative return values indicate an error, otherwise the previous status is
  1625. returned.
  1626. @end deftypefun
  1627. @deftypefun int starpu_profiling_status_get (void)
  1628. Return the current profiling status or a negative value in case there was an error.
  1629. @end deftypefun
  1630. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1631. This function sets the ID used for profiling trace filename
  1632. @end deftypefun
  1633. @deftp {Data Type} {struct starpu_task_profiling_info}
  1634. This structure contains information about the execution of a task. It is
  1635. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1636. structure if profiling was enabled. The different fields are:
  1637. @table @asis
  1638. @item @code{struct timespec submit_time}
  1639. Date of task submission (relative to the initialization of StarPU).
  1640. @item @code{struct timespec push_start_time}
  1641. Time when the task was submitted to the scheduler.
  1642. @item @code{struct timespec push_end_time}
  1643. Time when the scheduler finished with the task submission.
  1644. @item @code{struct timespec pop_start_time}
  1645. Time when the scheduler started to be requested for a task, and eventually gave
  1646. that task.
  1647. @item @code{struct timespec pop_end_time}
  1648. Time when the scheduler finished providing the task for execution.
  1649. @item @code{struct timespec acquire_data_start_time}
  1650. Time when the worker started fetching input data.
  1651. @item @code{struct timespec acquire_data_end_time}
  1652. Time when the worker finished fetching input data.
  1653. @item @code{struct timespec start_time}
  1654. Date of task execution beginning (relative to the initialization of StarPU).
  1655. @item @code{struct timespec end_time}
  1656. Date of task execution termination (relative to the initialization of StarPU).
  1657. @item @code{struct timespec release_data_start_time}
  1658. Time when the worker started releasing data.
  1659. @item @code{struct timespec release_data_end_time}
  1660. Time when the worker finished releasing data.
  1661. @item @code{struct timespec callback_start_time}
  1662. Time when the worker started the application callback for the task.
  1663. @item @code{struct timespec callback_end_time}
  1664. Time when the worker finished the application callback for the task.
  1665. @item @code{workerid}
  1666. Identifier of the worker which has executed the task.
  1667. @item @code{uint64_t used_cycles}
  1668. Number of cycles used by the task, only available in the MoviSim
  1669. @item @code{uint64_t stall_cycles}
  1670. Number of cycles stalled within the task, only available in the MoviSim
  1671. @item @code{double power_consumed}
  1672. Power consumed by the task, only available in the MoviSim
  1673. @end table
  1674. @end deftp
  1675. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1676. This structure contains the profiling information associated to a
  1677. worker. The different fields are:
  1678. @table @asis
  1679. @item @code{struct timespec start_time}
  1680. Starting date for the reported profiling measurements.
  1681. @item @code{struct timespec total_time}
  1682. Duration of the profiling measurement interval.
  1683. @item @code{struct timespec executing_time}
  1684. Time spent by the worker to execute tasks during the profiling measurement interval.
  1685. @item @code{struct timespec sleeping_time}
  1686. Time spent idling by the worker during the profiling measurement interval.
  1687. @item @code{int executed_tasks}
  1688. Number of tasks executed by the worker during the profiling measurement interval.
  1689. @item @code{uint64_t used_cycles}
  1690. Number of cycles used by the worker, only available in the MoviSim
  1691. @item @code{uint64_t stall_cycles}
  1692. Number of cycles stalled within the worker, only available in the MoviSim
  1693. @item @code{double power_consumed}
  1694. Power consumed by the worker, only available in the MoviSim
  1695. @end table
  1696. @end deftp
  1697. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1698. Get the profiling info associated to the worker identified by @var{workerid},
  1699. and reset the profiling measurements. If the @var{worker_info} argument is
  1700. NULL, only reset the counters associated to worker @var{workerid}.
  1701. Upon successful completion, this function returns 0. Otherwise, a negative
  1702. value is returned.
  1703. @end deftypefun
  1704. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1705. The different fields are:
  1706. @table @asis
  1707. @item @code{struct timespec start_time}
  1708. Time of bus profiling startup.
  1709. @item @code{struct timespec total_time}
  1710. Total time of bus profiling.
  1711. @item @code{int long long transferred_bytes}
  1712. Number of bytes transferred during profiling.
  1713. @item @code{int transfer_count}
  1714. Number of transfers during profiling.
  1715. @end table
  1716. @end deftp
  1717. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1718. Get the profiling info associated to the worker designated by @var{workerid},
  1719. and reset the profiling measurements. If worker_info is NULL, only reset the
  1720. counters.
  1721. @end deftypefun
  1722. @deftypefun int starpu_bus_get_count (void)
  1723. Return the number of buses in the machine.
  1724. @end deftypefun
  1725. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1726. Return the identifier of the bus between @var{src} and @var{dst}
  1727. @end deftypefun
  1728. @deftypefun int starpu_bus_get_src (int @var{busid})
  1729. Return the source point of bus @var{busid}
  1730. @end deftypefun
  1731. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1732. Return the destination point of bus @var{busid}
  1733. @end deftypefun
  1734. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1735. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1736. @end deftypefun
  1737. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1738. Converts the given timespec @var{ts} into microseconds.
  1739. @end deftypefun
  1740. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1741. Displays statistics about the bus on stderr.
  1742. @end deftypefun
  1743. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1744. Displays statistics about the workers on stderr.
  1745. @end deftypefun
  1746. @node CUDA extensions
  1747. @section CUDA extensions
  1748. @defmac STARPU_USE_CUDA
  1749. This macro is defined when StarPU has been installed with CUDA
  1750. support. It should be used in your code to detect the availability of
  1751. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1752. @end defmac
  1753. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1754. This function gets the current worker's CUDA stream.
  1755. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1756. function is only provided for convenience so that programmers can easily use
  1757. asynchronous operations within codelets without having to create a stream by
  1758. hand. Note that the application is not forced to use the stream provided by
  1759. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1760. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1761. the likelihood of having all transfers overlapped.
  1762. @end deftypefun
  1763. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1764. This function returns a pointer to device properties for worker @var{workerid}
  1765. (assumed to be a CUDA worker).
  1766. @end deftypefun
  1767. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1768. Return the size of the global memory of CUDA device @var{devid}.
  1769. @end deftypefun
  1770. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1771. Report a CUDA error.
  1772. @end deftypefun
  1773. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1774. Calls starpu_cuda_report_error, passing the current function, file and line
  1775. position.
  1776. @end defmac
  1777. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  1778. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  1779. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  1780. The function first tries to copy the data asynchronous (unless
  1781. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  1782. @var{stream} is @code{NULL}, it copies the data synchronously.
  1783. The function returns @code{-EAGAIN} if the asynchronous copy was
  1784. successfull. It returns 0 if the synchronous copy was successful, or
  1785. fails otherwise.
  1786. @end deftypefun
  1787. @deftypefun void starpu_cuda_set_device (int @var{devid})
  1788. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  1789. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  1790. the @code{starpu_conf} structure.
  1791. @end deftypefun
  1792. @deftypefun void starpu_helper_cublas_init (void)
  1793. This function initializes CUBLAS on every CUDA device.
  1794. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1795. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1796. controlled by StarPU. This call blocks until CUBLAS has been properly
  1797. initialized on every device.
  1798. @end deftypefun
  1799. @deftypefun void starpu_helper_cublas_shutdown (void)
  1800. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1801. @end deftypefun
  1802. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1803. Report a cublas error.
  1804. @end deftypefun
  1805. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1806. Calls starpu_cublas_report_error, passing the current function, file and line
  1807. position.
  1808. @end defmac
  1809. @node OpenCL extensions
  1810. @section OpenCL extensions
  1811. @menu
  1812. * Writing OpenCL kernels:: Writing OpenCL kernels
  1813. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1814. * Loading OpenCL kernels:: Loading OpenCL kernels
  1815. * OpenCL statistics:: Collecting statistics from OpenCL
  1816. * OpenCL utilities:: Utilities for OpenCL
  1817. @end menu
  1818. @defmac STARPU_USE_OPENCL
  1819. This macro is defined when StarPU has been installed with OpenCL
  1820. support. It should be used in your code to detect the availability of
  1821. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1822. @end defmac
  1823. @node Writing OpenCL kernels
  1824. @subsection Writing OpenCL kernels
  1825. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1826. Return the size of global device memory in bytes.
  1827. @end deftypefun
  1828. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1829. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1830. @end deftypefun
  1831. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1832. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1833. @end deftypefun
  1834. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1835. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1836. @end deftypefun
  1837. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1838. Return the context of the current worker.
  1839. @end deftypefun
  1840. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1841. Return the computation kernel command queue of the current worker.
  1842. @end deftypefun
  1843. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1844. Sets the arguments of a given kernel. The list of arguments must be given as
  1845. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1846. The last argument must be 0. Returns the number of arguments that were
  1847. successfully set. In case of failure, returns the id of the argument
  1848. that could not be set and @var{err} is set to the error returned by
  1849. OpenCL. Otherwise, returns the number of arguments that were set.
  1850. @cartouche
  1851. @smallexample
  1852. int n;
  1853. cl_int err;
  1854. cl_kernel kernel;
  1855. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  1856. sizeof(foo), &foo,
  1857. sizeof(bar), &bar,
  1858. 0);
  1859. if (n != 2)
  1860. fprintf(stderr, "Error : %d\n", err);
  1861. @end smallexample
  1862. @end cartouche
  1863. @end deftypefun
  1864. @node Compiling OpenCL kernels
  1865. @subsection Compiling OpenCL kernels
  1866. Source codes for OpenCL kernels can be stored in a file or in a
  1867. string. StarPU provides functions to build the program executable for
  1868. each available OpenCL device as a @code{cl_program} object. This
  1869. program executable can then be loaded within a specific queue as
  1870. explained in the next section. These are only helpers, Applications
  1871. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1872. use (e.g. different programs on the different OpenCL devices, for
  1873. relocation purpose for instance).
  1874. @deftp {Data Type} {struct starpu_opencl_program}
  1875. Stores the OpenCL programs as compiled for the different OpenCL devices.
  1876. @table @asis
  1877. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  1878. Stores each program for each OpenCL device.
  1879. @end table
  1880. @end deftp
  1881. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1882. @anchor{starpu_opencl_load_opencl_from_file}
  1883. This function compiles an OpenCL source code stored in a file.
  1884. @end deftypefun
  1885. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1886. This function compiles an OpenCL source code stored in a string.
  1887. @end deftypefun
  1888. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1889. This function unloads an OpenCL compiled code.
  1890. @end deftypefun
  1891. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  1892. Store the contents of the file @var{source_file_name} in the buffer
  1893. @var{opencl_program_source}. The file @var{source_file_name} can be
  1894. located in the current directory, or in the directory specified by the
  1895. environment variable @code{STARPU_OPENCL_PROGRAM_DIR}, or in the
  1896. directory @code{share/starpu/opencl} of the installation directory of
  1897. StarPU, or in the source directory of StarPU.
  1898. When the file is found, @code{located_file_name} is the full name of
  1899. the file as it has been located on the system, @code{located_dir_name}
  1900. the directory where it has been located. Otherwise, they are both set
  1901. to the empty string.
  1902. @end deftypefun
  1903. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char*} @var{build_options})
  1904. Compile the OpenCL kernel stored in the file @code{source_file_name}
  1905. with the given options @code{build_options} and stores the result in
  1906. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  1907. filename as @code{source_file_name}. The compilation is done for every
  1908. OpenCL device, and the filename is suffixed with the vendor id and the
  1909. device id of the OpenCL device.
  1910. @end deftypefun
  1911. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  1912. Compile the OpenCL kernel in the string @code{opencl_program_source}
  1913. with the given options @code{build_options} and stores the result in
  1914. the directory @code{$STARPU_HOME/.starpu/opencl} with the filename
  1915. @code{file_name}. The compilation is done for every
  1916. OpenCL device, and the filename is suffixed with the vendor id and the
  1917. device id of the OpenCL device.
  1918. @end deftypefun
  1919. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  1920. Compile the binary OpenCL kernel identified with @var{id}. For every
  1921. OpenCL device, the binary OpenCL kernel will be loaded from the file
  1922. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  1923. @end deftypefun
  1924. @node Loading OpenCL kernels
  1925. @subsection Loading OpenCL kernels
  1926. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  1927. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  1928. queue returned in @var{queue}, using program @var{opencl_programs} and name
  1929. @var{kernel_name}
  1930. @end deftypefun
  1931. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1932. Release the given @var{kernel}, to be called after kernel execution.
  1933. @end deftypefun
  1934. @node OpenCL statistics
  1935. @subsection OpenCL statistics
  1936. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1937. This function allows to collect statistics on a kernel execution.
  1938. After termination of the kernels, the OpenCL codelet should call this function
  1939. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1940. collect statistics about the kernel execution (used cycles, consumed power).
  1941. @end deftypefun
  1942. @node OpenCL utilities
  1943. @subsection OpenCL utilities
  1944. @deftypefun {const char *}starpu_opencl_error_string (cl_int @var{status})
  1945. Return the error message in English corresponding to @var{status}, an
  1946. OpenCL error code.
  1947. @end deftypefun
  1948. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1949. Given a valid error @var{status}, prints the corresponding error message on
  1950. stdout, along with the given function name @var{func}, the given filename
  1951. @var{file}, the given line number @var{line} and the given message @var{msg}.
  1952. @end deftypefun
  1953. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  1954. Call the function @code{starpu_opencl_display_error} with the given
  1955. error @var{status}, the current function name, current file and line
  1956. number, and a empty message.
  1957. @end defmac
  1958. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1959. Call the function @code{starpu_opencl_display_error} and abort.
  1960. @end deftypefun
  1961. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  1962. Call the function @code{starpu_opencl_report_error} with the given
  1963. error @var{status}, with the current function name, current file and
  1964. line number, and a empty message.
  1965. @end defmac
  1966. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  1967. Call the function @code{starpu_opencl_report_error} with the given
  1968. message and the given error @var{status}, with the current function
  1969. name, current file and line number.
  1970. @end defmac
  1971. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  1972. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  1973. valid combination of cl_mem_flags values.
  1974. @end deftypefun
  1975. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1976. Copy @var{size} bytes from the given @var{ptr} on
  1977. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  1978. @var{offset} is the offset, in bytes, in @var{buffer}.
  1979. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  1980. synchronised before returning. If non NULL, @var{event} can be used
  1981. after the call to wait for this particular copy to complete.
  1982. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1983. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1984. was successful, or to 0 if event was NULL.
  1985. @end deftypefun
  1986. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1987. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  1988. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  1989. @var{offset} is the offset, in bytes, in @var{buffer}.
  1990. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  1991. synchronised before returning. If non NULL, @var{event} can be used
  1992. after the call to wait for this particular copy to complete.
  1993. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1994. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1995. was successful, or to 0 if event was NULL.
  1996. @end deftypefun
  1997. @node Cell extensions
  1998. @section Cell extensions
  1999. nothing yet.
  2000. @node Miscellaneous helpers
  2001. @section Miscellaneous helpers
  2002. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2003. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2004. The @var{asynchronous} parameter indicates whether the function should
  2005. block or not. In the case of an asynchronous call, it is possible to
  2006. synchronize with the termination of this operation either by the means of
  2007. implicit dependencies (if enabled) or by calling
  2008. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2009. this callback function is executed after the handle has been copied, and it is
  2010. given the @var{callback_arg} pointer as argument.
  2011. @end deftypefun
  2012. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2013. This function executes the given function on a subset of workers.
  2014. When calling this method, the offloaded function specified by the first argument is
  2015. executed by every StarPU worker that may execute the function.
  2016. The second argument is passed to the offloaded function.
  2017. The last argument specifies on which types of processing units the function
  2018. should be executed. Similarly to the @var{where} field of the
  2019. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2020. should be executed on every CUDA device and every CPU by passing
  2021. @code{STARPU_CPU|STARPU_CUDA}.
  2022. This function blocks until the function has been executed on every appropriate
  2023. processing units, so that it may not be called from a callback function for
  2024. instance.
  2025. @end deftypefun