| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 | /* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2012-2020  Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */#include <starpu.h>#include "../helper.h"#ifdef STARPU_USE_CUDA#  include <starpu_cublas_v2.h>#endif/* * Compare the efficiency of matrix and vector interfaces */#ifdef STARPU_QUICK_CHECK#define LOOPS 5#elif !defined(STARPU_LONG_CHECK)#define LOOPS 30#else#define LOOPS 100#endifvoid vector_cpu_func(void *descr[], void *cl_arg){	(void)cl_arg;	STARPU_SKIP_IF_VALGRIND;	float *matrix = (float *)STARPU_VECTOR_GET_PTR(descr[0]);	int nx = STARPU_VECTOR_GET_NX(descr[0]);	int i;	float sum=0;	for(i=0 ; i<nx ; i++) sum+=matrix[i];	matrix[0] = sum/nx;}#ifdef STARPU_USE_CUDAstaticvoid vector_cuda_func(void *descr[], void *cl_arg){	(void)cl_arg;	STARPU_SKIP_IF_VALGRIND;	float *matrix = (float *)STARPU_VECTOR_GET_PTR(descr[0]);	int nx = STARPU_VECTOR_GET_NX(descr[0]);	float sum;	cublasStatus_t status = cublasSasum(starpu_cublas_get_local_handle(), nx, matrix, 1, &sum);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);	cudaStreamSynchronize(starpu_cuda_get_local_stream());	sum /= nx;	cudaMemcpyAsync(matrix, &sum, sizeof(matrix[0]), cudaMemcpyHostToDevice, starpu_cuda_get_local_stream());}#endif /* STARPU_USE_CUDA */void matrix_cpu_func(void *descr[], void *cl_arg){	(void)cl_arg;	STARPU_SKIP_IF_VALGRIND;	float *matrix = (float *)STARPU_MATRIX_GET_PTR(descr[0]);	int nx = STARPU_MATRIX_GET_NX(descr[0]);	int ny = STARPU_MATRIX_GET_NY(descr[0]);	int i;	float sum=0;	for(i=0 ; i<nx*ny ; i++) sum+=matrix[i];	matrix[0] = sum / (nx*ny);}#ifdef STARPU_USE_CUDAstaticvoid matrix_cuda_func(void *descr[], void *cl_arg){	(void)cl_arg;	STARPU_SKIP_IF_VALGRIND;	float *matrix = (float *)STARPU_MATRIX_GET_PTR(descr[0]);	int nx = STARPU_MATRIX_GET_NX(descr[0]);	int ny = STARPU_MATRIX_GET_NY(descr[0]);	float sum;	cublasStatus_t status = cublasSasum(starpu_cublas_get_local_handle(), nx*ny, matrix, 1, &sum);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);	cudaStreamSynchronize(starpu_cuda_get_local_stream());	sum /= nx*ny;	cudaMemcpyAsync(matrix, &sum, sizeof(matrix[0]), cudaMemcpyHostToDevice, starpu_cuda_get_local_stream());}#endif /* STARPU_USE_CUDA */staticint check_size(int nx, struct starpu_codelet *vector_codelet, struct starpu_codelet *matrix_codelet, char *device_name){	float *matrix, mean;	starpu_data_handle_t vector_handle, matrix_handle;	int ret, i, loop, maxloops;	double vector_timing, matrix_timing;	double start;	double end;	starpu_malloc((void **) &matrix, nx*sizeof(matrix[0]));	maxloops = LOOPS;#ifdef STARPU_HAVE_VALGRIND_H	if (RUNNING_ON_VALGRIND)		/* computations are skipped when running on valgrind, there is no need to have several loops */		maxloops=1;#endif /* STARPU_HAVE_VALGRIND_H */	start = starpu_timing_now();	for(loop=1 ; loop<=maxloops ; loop++)	{		for(i=0 ; i<nx ; i++) matrix[i] = i;		starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)matrix, nx, sizeof(matrix[0]));		ret = starpu_task_insert(vector_codelet, STARPU_RW, vector_handle, 0);		starpu_data_unregister(vector_handle);		if (ret == -ENODEV) goto end;	}	end = starpu_timing_now();	vector_timing = end - start;	vector_timing /= maxloops;	mean = matrix[0];	start = starpu_timing_now();	for(loop=1 ; loop<=maxloops ; loop++)	{		for(i=0 ; i<nx ; i++) matrix[i] = i;		starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (uintptr_t)matrix, nx/2, nx/2, 2, sizeof(matrix[0]));		ret = starpu_task_insert(matrix_codelet, STARPU_RW, matrix_handle, 0);		starpu_data_unregister(matrix_handle);		if (ret == -ENODEV) goto end;	}	end = starpu_timing_now();	matrix_timing = end - start;	matrix_timing /= maxloops;	if (fabs(mean - matrix[0]) < 0.00001)	{		fprintf(stderr, "%d\t%f\t%f\n", nx, vector_timing, matrix_timing);		{			char *output_dir = getenv("STARPU_BENCH_DIR");			char *bench_id = getenv("STARPU_BENCH_ID");			if (output_dir && bench_id)			{				char file[1024];				FILE *f;				snprintf(file, sizeof(file), "%s/matrix_as_vector_%s.dat", output_dir, device_name);				f = fopen(file, "a");				fprintf(f, "%s\t%d\t%f\t%f\n", bench_id, nx, vector_timing, matrix_timing);				fclose(f);			}		}		ret = EXIT_SUCCESS;	}	else	{		fprintf(stderr, "# Incorrect result nx=%7d --> mean=%7f != %7f\n", nx, matrix[0], mean);		ret = EXIT_FAILURE;	}end:	if (ret == -ENODEV)		fprintf(stderr, "# Uh, ENODEV?!");	starpu_free(matrix);	starpu_task_wait_for_all();	return ret;}#define NX_MIN 1024#define NX_MAX 1024*1024staticint check_size_on_device(uint32_t where, char *device_name){	int nx, ret;	struct starpu_codelet vector_codelet;	struct starpu_codelet matrix_codelet;	fprintf(stderr, "# Device: %s\n", device_name);	fprintf(stderr, "# nx vector_timing matrix_timing\n");	starpu_codelet_init(&vector_codelet);	vector_codelet.modes[0] = STARPU_RW;	vector_codelet.nbuffers = 1;	if (where == STARPU_CPU) vector_codelet.cpu_funcs[0] = vector_cpu_func;#ifdef STARPU_USE_CUDA	if (where == STARPU_CUDA)	{		vector_codelet.cuda_funcs[0] = vector_cuda_func;		vector_codelet.cuda_flags[0] = STARPU_CUDA_ASYNC;	}#endif//	if (where == STARPU_OPENCL) vector_codelet.opencl_funcs[0] = vector_opencl_func;	starpu_codelet_init(&matrix_codelet);	matrix_codelet.modes[0] = STARPU_RW;	matrix_codelet.nbuffers = 1;	if (where == STARPU_CPU) matrix_codelet.cpu_funcs[0] = matrix_cpu_func;#ifdef STARPU_USE_CUDA	if (where == STARPU_CUDA)	{		matrix_codelet.cuda_funcs[0] = matrix_cuda_func;		matrix_codelet.cuda_flags[0] = STARPU_CUDA_ASYNC;	}#endif//	if (where == STARPU_OPENCL) matrix_codelet.opencl_funcs[0] = matrix_opencl_func;	for(nx=NX_MIN ; nx<=NX_MAX ; nx*=2)	{		ret = check_size(nx, &vector_codelet, &matrix_codelet, device_name);		if (ret != EXIT_SUCCESS) break;	}	return ret;}int main(void){	int ret;	unsigned devices;#ifdef STARPU_USE_CUDA	int cublas_version;#endif	ret = starpu_init(NULL);	if (ret == -ENODEV) return STARPU_TEST_SKIPPED;	STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");	devices = starpu_cpu_worker_get_count();	if (devices)	{		ret = check_size_on_device(STARPU_CPU, "STARPU_CPU");		if (ret) goto error;	}#ifdef STARPU_USE_CUDA	devices = starpu_cuda_worker_get_count();	if (devices)	{		cublasHandle_t handle;		cublasCreate(&handle);		cublasGetVersion(handle, &cublas_version);		cublasDestroy(handle);		if (cublas_version >= 7050)		{			starpu_cublas_init();			ret = check_size_on_device(STARPU_CUDA, "STARPU_CUDA");			if (ret) goto error;			starpu_cublas_shutdown();		}	}#endif#if 0	devices = starpu_opencl_worker_get_count();	if (devices)	{		ret = check_size_on_device(STARPU_OPENCL, "STARPU_OPENCL");		if (ret) goto error;	}#endiferror:	if (ret == -ENODEV) ret=STARPU_TEST_SKIPPED;	starpu_shutdown();	STARPU_RETURN(ret);}
 |