123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- # StarPU --- Runtime system for heterogeneous multicore architectures.
- #
- # Copyright (C) 2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
- #
- # StarPU is free software; you can redistribute it and/or modify
- # it under the terms of the GNU Lesser General Public License as published by
- # the Free Software Foundation; either version 2.1 of the License, or (at
- # your option) any later version.
- #
- # StarPU is distributed in the hope that it will be useful, but
- # WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- #
- # See the GNU Lesser General Public License in COPYING.LGPL for more details.
- #
- import Libdl
- using StarPU
- @target STARPU_CPU+STARPU_CUDA
- @codelet function black_scholes(data ::Matrix{Float64}, res ::Matrix{Float64}) :: Float32
-
- widthn ::Int64 = width(data)
-
- # data[1,...] -> S
- # data[2,...] -> K
- # data[3,...] -> r
- # data[4,...] -> T
- # data[4,...] -> sig
- p ::Float64 = 0.2316419
- b1 ::Float64 = 0.31938153
- b2 ::Float64 = -0.356563782
- b3 ::Float64 = 1.781477937
- b4 ::Float64 = -1.821255978
- b5 ::Float64 = 1.330274428
-
- @parallel for i = 1:widthn
-
- d1 ::Float64 = (log(data[1,i] / data[2,i]) + (data[3,i] + pow(data[5,i], 2.0) * 0.5) * data[4,i]) / (data[5,i] * sqrt(data[4,i]))
- d2 ::Float64 = (log(data[1,i] / data[2,i]) + (data[3,i] - pow(data[5,i], 2.0) * 0.5) * data[4,i]) / (data[5,i] * sqrt(data[4,i]))
-
- f ::Float64 = 0
- ff ::Float64 = 0
- s1 ::Float64 = 0
- s2 ::Float64 = 0
- s3 ::Float64 = 0
- s4 ::Float64 = 0
- s5 ::Float64 = 0
- sz ::Float64 = 0
-
-
- ######## Compute normcdf of d1
- normd1p ::Float64 = 0
- normd1n ::Float64 = 0
- boold1 ::Int64 = (d1 >= 0) + (d1 <= 0)
-
- if (boold1 >= 2)
- normd1p = 0.5
- normd1n = 0.5
- else
- tmp1 ::Float64 = abs(d1)
- f = 1 / sqrt(2 * M_PI)
- ff = exp(-pow(tmp1, 2.0) / 2) * f
- s1 = b1 / (1 + p * tmp1)
- s2 = b2 / pow((1 + p * tmp1), 2.0)
- s3 = b3 / pow((1 + p * tmp1), 3.0)
- s4 = b4 / pow((1 + p * tmp1), 4.0)
- s5 = b5 / pow((1 + p * tmp1), 5.0)
- sz = ff * (s1 + s2 + s3 + s4 + s5)
-
- if (d1 > 0)
- normd1p = 1 - sz # normcdf(d1)
- normd1n = sz # normcdf(-d1)
- else
- normd1p = sz
- normd1n = 1 - sz
- end
- end
- ########
-
- ######## Compute normcdf of d2
- normd2p ::Float64 = 0
- normd2n ::Float64 = 0
- boold2 ::Int64 = (d2 >= 0) + (d2 <= 0)
-
- if (boold2 >= 2)
- normd2p = 0.5
- normd2n = 0.5
- else
- tmp2 ::Float64 = abs(d2)
- f = 1 / sqrt(2 * M_PI)
- ff = exp(-pow(tmp2, 2.0) / 2) * f
- s1 = b1 / (1 + p * tmp2)
- s2 = b2 / pow((1 + p * tmp2), 2.0)
- s3 = b3 / pow((1 + p * tmp2), 3.0)
- s4 = b4 / pow((1 + p * tmp2), 4.0)
- s5 = b5 / pow((1 + p * tmp2), 5.0)
- sz = ff * (s1 + s2 + s3 + s4 + s5)
-
-
- if (d2 > 0)
- normd2p = 1 - sz # normcdf(d2)
- normd2n = sz # normcdf(-d2)
- else
- normd2p = sz
- normd2n = 1 - sz
- end
- end
- # normd1p = (1 + erf(d1/sqrt(2.0)))/2.0
- # normd1n = (1 + erf(-d1/sqrt(2.0)))/2.0
-
- # normd2p = (1 + erf(d2/sqrt(2.0)))/2.0
- # normd2n = (1 + erf(-d2/sqrt(2.0)))/2.0
-
- res[1,i] = data[1,i] * (normd1p) - data[2,i]*exp(-data[3,i]*data[4,i]) * (normd2p) # S * N(d1) - r*exp(-r*T) * norm(d2)
- res[2,i] = -data[1,i] * (normd1n) + data[2,i]*exp(-data[3,i]*data[4,i]) * (normd2n) # -S * N(-d1) + r*exp(-r*T) * norm(-d2)
-
- end
- return 0
- end
- starpu_init()
- function black_scholes_starpu(data ::Matrix{Float64}, res ::Matrix{Float64}, nslices ::Int64)
- vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslices)
- @starpu_block let
- dat_handle, res_handle = starpu_data_register(data, res)
- starpu_data_partition(dat_handle, vert)
- starpu_data_partition(res_handle, vert)
-
- #Compute the price of call and put option in the res matrix
- @starpu_sync_tasks for task in (1:nslices)
- @starpu_async_cl black_scholes(dat_handle[task], res_handle[task]) [STARPU_RW, STARPU_RW]
- end
- end
- return 0
- end
- function init_data(data, data_nbr);
- for i in 1:data_nbr
- data[1,i] = rand(Float64) * 100
- data[2,i] = rand(Float64) * 100
- data[3,i] = rand(Float64)
- data[4,i] = rand(Float64) * 10
- data[5,i] = rand(Float64) * 10
- end
- return data
- end
-
- function median_times(data_nbr, nslices, nbr_tests)
- data ::Matrix{Float64} = zeros(5, data_nbr)
- # data[1,1] = 100.0
- # data[2,1] = 100.0
- # data[3,1] = 0.05
- # data[4,1] = 1.0
- # data[5,1] = 0.2
- res ::Matrix{Float64} = zeros(2, data_nbr)
- exec_times ::Vector{Float64} = [0. for i in 1:nbr_tests]
- for i = 1:nbr_tests
-
- init_data(data, data_nbr)
- tic()
- black_scholes_starpu(data, res, nslices);
- t = toq()
- exec_times[i] = t
- end
- sort!(exec_times)
- # println(data)
- # println(res)
-
- return exec_times[1 + div(nbr_tests - 1, 2)]
- end
- function display_times(start_nbr, step_nbr, stop_nbr, nslices, nbr_tests)
- i = 1
- open("black_scholes_times.dat", "w") do f
- for data_nbr in (start_nbr : step_nbr : stop_nbr)
- t = median_times(data_nbr, nslices, nbr_tests)
- println("Number of data:\n$data_nbr\nTimes:\njl: $t\nC: $(mtc[i])\nGen: $(mtcgen[i])")
- write(f, "$data_nbr $(t)\n")
- i = i + 1
- end
- end
- end
|