123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- # StarPU --- Runtime system for heterogeneous multicore architectures.
- #
- # Copyright (C) 2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
- #
- # StarPU is free software; you can redistribute it and/or modify
- # it under the terms of the GNU Lesser General Public License as published by
- # the Free Software Foundation; either version 2.1 of the License, or (at
- # your option) any later version.
- #
- # StarPU is distributed in the hope that it will be useful, but
- # WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- #
- # See the GNU Lesser General Public License in COPYING.LGPL for more details.
- #
- using StarPU
- using LinearAlgebra.BLAS
- # Standard kernels for the Cholesky factorization
- # U22 is the gemm update
- # U21 is the trsm update
- # U11 is the cholesky factorization
- @target STARPU_CPU+STARPU_CUDA
- @codelet function u11(sub11 :: Matrix{Float32}) :: Nothing
- nx :: Int32 = width(sub11)
- ld :: Int32 = ld(sub11)
- for z in 0:nx-1
- lambda11 :: Float32 = sqrt(sub11[z+1,z+1])
- sub11[z+1,z+1] = lambda11
- alpha ::Float32 = 1.0f0 / lambda11
- X :: Vector{Float32} = view(sub11, z+2:z+2+(nx-z-2), z+1)
- STARPU_SSCAL(nx-z-1, alpha, X, 1)
- alpha = -1.0f0
- A :: Matrix{Float32} = view(sub11, z+2:z+2+(nx-z-2), z+2:z+2+(nx-z-2))
- STARPU_SSYR("L", nx-z-1, alpha, X, 1, A, ld)
- end
- return
- end
- @target STARPU_CPU+STARPU_CUDA
- @codelet function u21(sub11 :: Matrix{Float32},
- sub21 :: Matrix{Float32}) :: Nothing
- ld11 :: Int32 = ld(sub11)
- ld21 :: Int32 = ld(sub21)
- nx21 :: Int32 = width(sub21)
- ny21 :: Int32 = height(sub21)
- alpha :: Float32 = 1.0f0
- STARPU_STRSM("R", "L", "T", "N", nx21, ny21, alpha, sub11, ld11, sub21, ld21)
- return
- end
- @target STARPU_CPU+STARPU_CUDA
- @codelet function u22(left :: Matrix{Float32},
- right :: Matrix{Float32},
- center :: Matrix{Float32}) :: Nothing
- dx :: Int32 = width(center)
- dy :: Int32 = height(center)
- dz :: Int32 = width(left)
- ld21 :: Int32 = ld(left)
- ld12 :: Int32 = ld(center)
- ld22 :: Int32 = ld(right)
- alpha :: Float32 = -1.0f0
- beta :: Float32 = 1.0f0
- STARPU_SGEMM("N", "T", dy, dx, dz, alpha, left, ld21, right, ld12, beta, center, ld22)
- return
- end
- function cholesky(mat :: Matrix{Float32}, size, nblocks)
- perfmodel = starpu_perfmodel(
- perf_type = starpu_perfmodel_type(STARPU_HISTORY_BASED),
- symbol = "history_perf"
- )
- cl_11 = starpu_codelet(
- cpu_func = CPU_CODELETS["u11"],
- # This kernel cannot be translated to CUDA yet.
- # cuda_func = CUDA_CODELETS["u11"],
- modes = [STARPU_RW],
- color = 0xffff00,
- perfmodel = perfmodel
- )
- cl_21 = starpu_codelet(
- cpu_func = CPU_CODELETS["u21"],
- # cuda_func = CUDA_CODELETS["u21"],
- modes = [STARPU_R, STARPU_RW],
- color = 0x8080ff,
- perfmodel = perfmodel
- )
- cl_22 = starpu_codelet(
- cpu_func = CPU_CODELETS["u22"],
- # cuda_func = CUDA_CODELETS["u22"],
- modes = [STARPU_R, STARPU_R, STARPU_RW],
- color = 0x00ff00,
- perfmodel = perfmodel
- )
- horiz = starpu_data_filter(STARPU_MATRIX_FILTER_BLOCK, nblocks)
- vert = starpu_data_filter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nblocks)
- @starpu_block let
- h_mat = starpu_data_register(mat)
- starpu_data_map_filters(h_mat, horiz, vert)
- for k in 1:nblocks
- starpu_iteration_push(k)
- task = starpu_task(cl = cl_11, handles = [h_mat[k, k]])
- starpu_task_submit(task)
- for m in k+1:nblocks
- task = starpu_task(cl = cl_21, handles = [h_mat[k, k], h_mat[m, k]])
- starpu_task_submit(task)
- end
- for m in k+1:nblocks
- for n in k+1:nblocks
- if n <= m
- task = starpu_task(cl = cl_22, handles = [h_mat[m, k], h_mat[n, k], h_mat[m, n]])
- starpu_task_submit(task)
- end
- end
- end
- starpu_iteration_pop()
- end
- starpu_task_wait_for_all()
- end
- end
- function check(mat::Matrix{Float32})
- size_p = size(mat, 1)
- for i in 1:size_p
- for j in 1:size_p
- if j > i
- mat[i, j] = 0.0f0
- end
- end
- end
- test_mat ::Matrix{Float32} = zeros(Float32, size_p, size_p)
- syrk!('L', 'N', 1.0f0, mat, 0.0f0, test_mat)
- for i in 1:size_p
- for j in 1:size_p
- if j <= i
- orig = (1.0f0/(1.0f0+(i-1)+(j-1))) + ((i == j) ? 1.0f0*size_p : 0.0f0)
- err = abs(test_mat[i,j] - orig) / orig
- if err > 0.0001
- got = test_mat[i,j]
- expected = orig
- error("[$i, $j] -> $got != $expected (err $err)")
- end
- end
- end
- end
- println("Verification successful !")
- end
- function main(size_p :: Int, nblocks :: Int, verbose = false)
- starpu_init()
- mat :: Matrix{Float32} = zeros(Float32, size_p, size_p)
- # create a simple definite positive symetric matrix
- # Hilbert matrix h(i,j) = 1/(i+j+1)
- for i in 1:size_p
- for j in 1:size_p
- mat[i, j] = 1.0f0 / (1.0f0+(i-1)+(j-1)) + ((i == j) ? 1.0f0*size_p : 0.0f0)
- end
- end
- if verbose
- display(mat)
- end
- starpu_memory_pin(mat)
- t_start = time_ns()
- cholesky(mat, size_p, nblocks)
- t_end = time_ns()
- starpu_memory_unpin(mat)
- flop = (1.0*size_p*size_p*size_p)/3.0
- println("# size\tms\tGFlops")
- time_ms = (t_end-t_start) / 1e6
- gflops = flop/(time_ms*1000)/1000
- println("# $size_p\t$time_ms\t$gflops")
- if verbose
- display(mat)
- end
- check(mat)
- starpu_shutdown()
- end
- main(1024, 8)
|