basic-api.texi 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Library:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_conf}
  34. This structure is passed to the @code{starpu_init} function in order
  35. to configure StarPU.
  36. When the default value is used, StarPU automatically selects the number of
  37. processing units and takes the default scheduling policy. The environment
  38. variables overwrite the equivalent parameters.
  39. @table @asis
  40. @item @code{const char *sched_policy_name} (default = NULL)
  41. This is the name of the scheduling policy. This can also be specified
  42. with the @code{STARPU_SCHED} environment variable.
  43. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  44. This is the definition of the scheduling policy. This field is ignored
  45. if @code{sched_policy_name} is set.
  46. @item @code{int ncpus} (default = -1)
  47. This is the number of CPU cores that StarPU can use. This can also be
  48. specified with the @code{STARPU_NCPUS} environment variable.
  49. @item @code{int ncuda} (default = -1)
  50. This is the number of CUDA devices that StarPU can use. This can also
  51. be specified with the @code{STARPU_NCUDA} environment variable.
  52. @item @code{int nopencl} (default = -1)
  53. This is the number of OpenCL devices that StarPU can use. This can
  54. also be specified with the @code{STARPU_NOPENCL} environment variable.
  55. @item @code{int nspus} (default = -1)
  56. This is the number of Cell SPUs that StarPU can use. This can also be
  57. specified with the @code{STARPU_NGORDON} environment variable.
  58. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  59. If this flag is set, the @code{workers_bindid} array indicates where the
  60. different workers are bound, otherwise StarPU automatically selects where to
  61. bind the different workers. This can also be specified with the
  62. @code{STARPU_WORKERS_CPUID} environment variable.
  63. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  64. If the @code{use_explicit_workers_bindid} flag is set, this array
  65. indicates where to bind the different workers. The i-th entry of the
  66. @code{workers_bindid} indicates the logical identifier of the
  67. processor which should execute the i-th worker. Note that the logical
  68. ordering of the CPUs is either determined by the OS, or provided by
  69. the @code{hwloc} library in case it is available.
  70. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  71. If this flag is set, the CUDA workers will be attached to the CUDA devices
  72. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  73. CUDA devices in a round-robin fashion. This can also be specified with the
  74. @code{STARPU_WORKERS_CUDAID} environment variable.
  75. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  76. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  77. contains the logical identifiers of the CUDA devices (as used by
  78. @code{cudaGetDevice}).
  79. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  80. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  81. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  82. the OpenCL devices in a round-robin fashion. This can also be specified with
  83. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  84. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  85. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  86. contains the logical identifiers of the OpenCL devices to be used.
  87. @item @code{int calibrate} (default = 0)
  88. If this flag is set, StarPU will calibrate the performance models when
  89. executing tasks. If this value is equal to -1, the default value is used. This
  90. can also be specified with the @code{STARPU_CALIBRATE} environment variable.
  91. @item @code{int single_combined_worker} (default = 0)
  92. By default, StarPU parallel tasks concurrently.
  93. Some parallel libraries (e.g. most OpenMP implementations) however do
  94. not support concurrent calls to parallel code. In such case, setting this flag
  95. makes StarPU only start one parallel task at a time.
  96. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  97. @item @code{int disable_asynchronous_copy} (default = 0)
  98. This flag should be set to 1 to disable asynchronous copies between
  99. CPUs and accelerators. This can also be specified with the
  100. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  101. The AMD implementation of OpenCL is known to
  102. fail when copying data asynchronously. When using this implementation,
  103. it is therefore necessary to disable asynchronous data transfers.
  104. @end table
  105. @end deftp
  106. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  107. This function initializes the @var{conf} structure passed as argument
  108. with the default values. In case some configuration parameters are already
  109. specified through environment variables, @code{starpu_conf_init} initializes
  110. the fields of the structure according to the environment variables. For
  111. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  112. @code{.ncuda} field of the structure passed as argument.
  113. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  114. indicates that the argument was NULL.
  115. @end deftypefun
  116. @deftypefun void starpu_shutdown (void)
  117. This is StarPU termination method. It must be called at the end of the
  118. application: statistics and other post-mortem debugging information are not
  119. guaranteed to be available until this method has been called.
  120. @end deftypefun
  121. @deftypefun int starpu_asynchronous_copy_disabled ()
  122. Return 1 if asynchronous data transfers between CPU and accelerators
  123. are disabled.
  124. @end deftypefun
  125. @node Workers' Properties
  126. @section Workers' Properties
  127. @deftp {Data Type} {enum starpu_archtype}
  128. The different values are:
  129. @table @asis
  130. @item @code{STARPU_CPU_WORKER}
  131. @item @code{STARPU_CUDA_WORKER}
  132. @item @code{STARPU_OPENCL_WORKER}
  133. @item @code{STARPU_GORDON_WORKER}
  134. @end table
  135. @end deftp
  136. @deftypefun unsigned starpu_worker_get_count (void)
  137. This function returns the number of workers (i.e. processing units executing
  138. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  139. @end deftypefun
  140. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  141. Returns the number of workers of the given type indicated by the argument. A positive
  142. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  143. the type is not valid otherwise.
  144. @end deftypefun
  145. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  146. This function returns the number of CPUs controlled by StarPU. The returned
  147. value should be at most @code{STARPU_MAXCPUS}.
  148. @end deftypefun
  149. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  150. This function returns the number of CUDA devices controlled by StarPU. The returned
  151. value should be at most @code{STARPU_MAXCUDADEVS}.
  152. @end deftypefun
  153. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  154. This function returns the number of OpenCL devices controlled by StarPU. The returned
  155. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  156. @end deftypefun
  157. @deftypefun unsigned starpu_spu_worker_get_count (void)
  158. This function returns the number of Cell SPUs controlled by StarPU.
  159. @end deftypefun
  160. @deftypefun int starpu_worker_get_id (void)
  161. This function returns the identifier of the current worker, i.e the one associated to the calling
  162. thread. The returned value is either -1 if the current context is not a StarPU
  163. worker (i.e. when called from the application outside a task or a callback), or
  164. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  165. @end deftypefun
  166. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  167. This function gets the list of identifiers of workers with the given
  168. type. It fills the workerids array with the identifiers of the workers that have the type
  169. indicated in the first argument. The maxsize argument indicates the size of the
  170. workids array. The returned value gives the number of identifiers that were put
  171. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  172. workers with the appropriate type: in that case, the array is filled with the
  173. maxsize first elements. To avoid such overflows, the value of maxsize can be
  174. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  175. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  176. @end deftypefun
  177. @deftypefun int starpu_worker_get_devid (int @var{id})
  178. This functions returns the device id of the given worker. The worker
  179. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  180. CUDA worker, this device identifier is the logical device identifier exposed by
  181. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  182. identifier of a CPU worker is the logical identifier of the core on which the
  183. worker was bound; this identifier is either provided by the OS or by the
  184. @code{hwloc} library in case it is available.
  185. @end deftypefun
  186. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  187. This function returns the type of processing unit associated to a
  188. worker. The worker identifier is a value returned by the
  189. @code{starpu_worker_get_id} function). The returned value
  190. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  191. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  192. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  193. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  194. identifier is unspecified.
  195. @end deftypefun
  196. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  197. This function allows to get the name of a given worker.
  198. StarPU associates a unique human readable string to each processing unit. This
  199. function copies at most the @var{maxlen} first bytes of the unique string
  200. associated to a worker identified by its identifier @var{id} into the
  201. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  202. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  203. function on an invalid identifier results in an unspecified behaviour.
  204. @end deftypefun
  205. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  206. This function returns the identifier of the memory node associated to the
  207. worker identified by @var{workerid}.
  208. @end deftypefun
  209. @deftp {Data Type} {enum starpu_node_kind}
  210. todo
  211. @table @asis
  212. @item @code{STARPU_UNUSED}
  213. @item @code{STARPU_CPU_RAM}
  214. @item @code{STARPU_CUDA_RAM}
  215. @item @code{STARPU_OPENCL_RAM}
  216. @item @code{STARPU_SPU_LS}
  217. @end table
  218. @end deftp
  219. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  220. Returns the type of the given node as defined by @code{enum
  221. starpu_node_kind}. For example, when defining a new data interface,
  222. this function should be used in the allocation function to determine
  223. on which device the memory needs to be allocated.
  224. @end deftypefun
  225. @node Data Library
  226. @section Data Library
  227. @menu
  228. * Introduction to Data Library::
  229. * Basic Data Library API::
  230. * Access registered data from the application::
  231. @end menu
  232. This section describes the data management facilities provided by StarPU.
  233. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  234. design their own data interfaces if required.
  235. @node Introduction to Data Library
  236. @subsection Introduction
  237. Data management is done at a high-level in StarPU: rather than accessing a mere
  238. list of contiguous buffers, the tasks may manipulate data that are described by
  239. a high-level construct which we call data interface.
  240. An example of data interface is the "vector" interface which describes a
  241. contiguous data array on a spefic memory node. This interface is a simple
  242. structure containing the number of elements in the array, the size of the
  243. elements, and the address of the array in the appropriate address space (this
  244. address may be invalid if there is no valid copy of the array in the memory
  245. node). More informations on the data interfaces provided by StarPU are
  246. given in @ref{Data Interfaces}.
  247. When a piece of data managed by StarPU is used by a task, the task
  248. implementation is given a pointer to an interface describing a valid copy of
  249. the data that is accessible from the current processing unit.
  250. Every worker is associated to a memory node which is a logical abstraction of
  251. the address space from which the processing unit gets its data. For instance,
  252. the memory node associated to the different CPU workers represents main memory
  253. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  254. Every memory node is identified by a logical index which is accessible from the
  255. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  256. to StarPU, the specified memory node indicates where the piece of data
  257. initially resides (we also call this memory node the home node of a piece of
  258. data).
  259. @node Basic Data Library API
  260. @subsection Basic Data Library API
  261. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  262. This function allocates data of the given size in main memory. It will also try to pin it in
  263. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  264. thus permit data transfer and computation overlapping. The allocated buffer must
  265. be freed thanks to the @code{starpu_free} function.
  266. @end deftypefun
  267. @deftypefun int starpu_free (void *@var{A})
  268. This function frees memory which has previously allocated with
  269. @code{starpu_malloc}.
  270. @end deftypefun
  271. @deftp {Data Type} {enum starpu_access_mode}
  272. This datatype describes a data access mode. The different available modes are:
  273. @table @asis
  274. @item @code{STARPU_R}: read-only mode.
  275. @item @code{STARPU_W}: write-only mode.
  276. @item @code{STARPU_RW}: read-write mode.
  277. This is equivalent to @code{STARPU_R|STARPU_W}.
  278. @item @code{STARPU_SCRATCH}: scratch memory.
  279. A temporary buffer is allocated for the task, but StarPU does not
  280. enforce data consistency---i.e. each device has its own buffer,
  281. independently from each other (even for CPUs), and no data transfer is
  282. ever performed. This is useful for temporary variables to avoid
  283. allocating/freeing buffers inside each task.
  284. Currently, no behavior is defined concerning the relation with the
  285. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  286. registration---i.e., the value of the scratch buffer is undefined at
  287. entry of the codelet function. It is being considered for future
  288. extensions at least to define the initial value. For now, data to be
  289. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  290. a @code{NULL} pointer, since the value of the provided buffer is simply
  291. ignored for now.
  292. @item @code{STARPU_REDUX} reduction mode.
  293. @end table
  294. @end deftp
  295. @deftp {Data Type} {starpu_data_handle_t}
  296. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  297. data. Once a piece of data has been registered to StarPU, it is associated to a
  298. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  299. over the entire machine, so that we can maintain data consistency and locate
  300. data replicates for instance.
  301. @end deftp
  302. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  303. Register a piece of data into the handle located at the @var{handleptr}
  304. address. The @var{data_interface} buffer contains the initial description of the
  305. data in the home node. The @var{ops} argument is a pointer to a structure
  306. describing the different methods used to manipulate this type of interface. See
  307. @ref{struct starpu_data_interface_ops} for more details on this structure.
  308. If @code{home_node} is -1, StarPU will automatically
  309. allocate the memory when it is used for the
  310. first time in write-only mode. Once such data handle has been automatically
  311. allocated, it is possible to access it using any access mode.
  312. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  313. matrix) which can be registered by the means of helper functions (e.g.
  314. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  315. @end deftypefun
  316. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  317. Register a new piece of data into the handle @var{handledst} with the
  318. same interface as the handle @var{handlesrc}.
  319. @end deftypefun
  320. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  321. This function unregisters a data handle from StarPU. If the data was
  322. automatically allocated by StarPU because the home node was -1, all
  323. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  324. is put back into the home node in the buffer that was initially registered.
  325. Using a data handle that has been unregistered from StarPU results in an
  326. undefined behaviour.
  327. @end deftypefun
  328. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  329. This is the same as starpu_data_unregister, except that StarPU does not put back
  330. a valid copy into the home node, in the buffer that was initially registered.
  331. @end deftypefun
  332. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  333. Destroy all replicates of the data handle. After data invalidation, the first
  334. access to the handle must be performed in write-only mode. Accessing an
  335. invalidated data in read-mode results in undefined behaviour.
  336. @end deftypefun
  337. @c TODO create a specific sections about user interaction with the DSM ?
  338. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  339. This function sets the write-through mask of a given data, i.e. a bitmask of
  340. nodes where the data should be always replicated after modification. It also
  341. prevents the data from being evicted from these nodes when memory gets scarse.
  342. @end deftypefun
  343. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  344. Issue a prefetch request for a given data to a given node, i.e.
  345. requests that the data be replicated to the given node, so that it is available
  346. there for tasks. If the @var{async} parameter is 0, the call will block until
  347. the transfer is achieved, else the call will return as soon as the request is
  348. scheduled (which may however have to wait for a task completion).
  349. @end deftypefun
  350. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  351. Return the handle corresponding to the data pointed to by the @var{ptr}
  352. host pointer.
  353. @end deftypefun
  354. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  355. Explicitly ask StarPU to allocate room for a piece of data on the specified
  356. memory node.
  357. @end deftypefun
  358. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  359. Query the status of the handle on the specified memory node.
  360. @end deftypefun
  361. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  362. This function allows to specify that a piece of data can be discarded
  363. without impacting the application.
  364. @end deftypefun
  365. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  366. This sets the codelets to be used for the @var{handle} when it is accessed in
  367. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  368. codelet, and reduction between per-worker buffers will be done with the
  369. @var{redux_cl} codelet.
  370. @end deftypefun
  371. @node Access registered data from the application
  372. @subsection Access registered data from the application
  373. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  374. The application must call this function prior to accessing registered data from
  375. main memory outside tasks. StarPU ensures that the application will get an
  376. up-to-date copy of the data in main memory located where the data was
  377. originally registered, and that all concurrent accesses (e.g. from tasks) will
  378. be consistent with the access mode specified in the @var{mode} argument.
  379. @code{starpu_data_release} must be called once the application does not need to
  380. access the piece of data anymore. Note that implicit data
  381. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  382. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  383. the data, unless that they have not been disabled explictly by calling
  384. @code{starpu_data_set_default_sequential_consistency_flag} or
  385. @code{starpu_data_set_sequential_consistency_flag}.
  386. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  387. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  388. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  389. @end deftypefun
  390. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  391. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  392. @code{starpu_data_release}. When the data specified in the first argument is
  393. available in the appropriate access mode, the callback function is executed.
  394. The application may access the requested data during the execution of this
  395. callback. The callback function must call @code{starpu_data_release} once the
  396. application does not need to access the piece of data anymore.
  397. Note that implicit data dependencies are also enforced by
  398. @code{starpu_data_acquire_cb} in case they are enabled.
  399. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  400. be called from task callbacks. Upon successful completion, this function
  401. returns 0.
  402. @end deftypefun
  403. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  404. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  405. except that the code to be executed in a callback is directly provided as a
  406. macro parameter, and the data handle is automatically released after it. This
  407. permits to easily execute code which depends on the value of some registered
  408. data. This is non-blocking too and may be called from task callbacks.
  409. @end defmac
  410. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  411. This function releases the piece of data acquired by the application either by
  412. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  413. @end deftypefun
  414. @node Data Interfaces
  415. @section Data Interfaces
  416. @menu
  417. * Registering Data::
  418. * Accessing Data Interfaces::
  419. @end menu
  420. @node Registering Data
  421. @subsection Registering Data
  422. There are several ways to register a memory region so that it can be managed by
  423. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  424. matrices as well as BCSR and CSR sparse matrices.
  425. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  426. Register a void interface. There is no data really associated to that
  427. interface, but it may be used as a synchronization mechanism. It also
  428. permits to express an abstract piece of data that is managed by the
  429. application internally: this makes it possible to forbid the
  430. concurrent execution of different tasks accessing the same "void" data
  431. in read-write concurrently.
  432. @end deftypefun
  433. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  434. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  435. typically a scalar, and initialize @var{handle} to represent this data
  436. item.
  437. @cartouche
  438. @smallexample
  439. float var;
  440. starpu_data_handle_t var_handle;
  441. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  442. @end smallexample
  443. @end cartouche
  444. @end deftypefun
  445. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  446. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  447. @var{ptr} and initialize @var{handle} to represent it.
  448. @cartouche
  449. @smallexample
  450. float vector[NX];
  451. starpu_data_handle_t vector_handle;
  452. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  453. sizeof(vector[0]));
  454. @end smallexample
  455. @end cartouche
  456. @end deftypefun
  457. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  458. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  459. pointed by @var{ptr} and initialize @var{handle} to represent it.
  460. @var{ld} specifies the number of elements between rows.
  461. a value greater than @var{nx} adds padding, which can be useful for
  462. alignment purposes.
  463. @cartouche
  464. @smallexample
  465. float *matrix;
  466. starpu_data_handle_t matrix_handle;
  467. matrix = (float*)malloc(width * height * sizeof(float));
  468. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  469. width, width, height, sizeof(float));
  470. @end smallexample
  471. @end cartouche
  472. @end deftypefun
  473. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  474. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  475. elements pointed by @var{ptr} and initialize @var{handle} to represent
  476. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  477. between rows and between z planes.
  478. @cartouche
  479. @smallexample
  480. float *block;
  481. starpu_data_handle_t block_handle;
  482. block = (float*)malloc(nx*ny*nz*sizeof(float));
  483. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  484. nx, nx*ny, nx, ny, nz, sizeof(float));
  485. @end smallexample
  486. @end cartouche
  487. @end deftypefun
  488. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  489. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  490. Compressed Sparse Row Representation) sparse matrix interface.
  491. Register the sparse matrix made of @var{nnz} non-zero values of size
  492. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  493. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  494. terms of blocks), @var{colind} is the list of positions of the non-zero entries
  495. on the row, @var{rowptr} is the index (in nzval) of the first entry of the row.
  496. @var{fristentry} is the index of the first entry of the given arrays (usually 0
  497. or 1).
  498. @end deftypefun
  499. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  500. This variant of @code{starpu_data_register} uses the CSR (Compressed
  501. Sparse Row Representation) sparse matrix interface.
  502. TODO
  503. @end deftypefun
  504. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  505. Return the interface associated with @var{handle} on @var{memory_node}.
  506. @end deftypefun
  507. @node Accessing Data Interfaces
  508. @subsection Accessing Data Interfaces
  509. Each data interface is provided with a set of field access functions.
  510. The ones using a @code{void *} parameter aimed to be used in codelet
  511. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  512. @deftp {Data Type} {enum starpu_data_interface_id}
  513. The different values are:
  514. @table @asis
  515. @item @code{STARPU_MATRIX_INTERFACE_ID}
  516. @item @code{STARPU_BLOCK_INTERFACE_ID}
  517. @item @code{STARPU_VECTOR_INTERFACE_ID}
  518. @item @code{STARPU_CSR_INTERFACE_ID}
  519. @item @code{STARPU_BCSR_INTERFACE_ID}
  520. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  521. @item @code{STARPU_VOID_INTERFACE_ID}
  522. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  523. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  524. @end table
  525. @end deftp
  526. @menu
  527. * Accessing Handle::
  528. * Accessing Variable Data Interfaces::
  529. * Accessing Vector Data Interfaces::
  530. * Accessing Matrix Data Interfaces::
  531. * Accessing Block Data Interfaces::
  532. * Accessing BCSR Data Interfaces::
  533. * Accessing CSR Data Interfaces::
  534. @end menu
  535. @node Accessing Handle
  536. @subsubsection Handle
  537. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  538. Return the pointer associated with @var{handle} on node @var{node} or
  539. @code{NULL} if @var{handle}'s interface does not support this
  540. operation or data for this handle is not allocated on that node.
  541. @end deftypefun
  542. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  543. Return the local pointer associated with @var{handle} or @code{NULL}
  544. if @var{handle}'s interface does not have data allocated locally
  545. @end deftypefun
  546. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  547. Return the unique identifier of the interface associated with the given @var{handle}.
  548. @end deftypefun
  549. @node Accessing Variable Data Interfaces
  550. @subsubsection Variable Data Interfaces
  551. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  552. Return the size of the variable designated by @var{handle}.
  553. @end deftypefun
  554. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  555. Return a pointer to the variable designated by @var{handle}.
  556. @end deftypefun
  557. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  558. Return a pointer to the variable designated by @var{interface}.
  559. @end defmac
  560. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  561. Return the size of the variable designated by @var{interface}.
  562. @end defmac
  563. @node Accessing Vector Data Interfaces
  564. @subsubsection Vector Data Interfaces
  565. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  566. Return the number of elements registered into the array designated by @var{handle}.
  567. @end deftypefun
  568. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  569. Return the size of each element of the array designated by @var{handle}.
  570. @end deftypefun
  571. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  572. Return the local pointer associated with @var{handle}.
  573. @end deftypefun
  574. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  575. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  576. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  577. @end defmac
  578. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  579. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  580. documented below has to be used in addition to this.
  581. @end defmac
  582. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  583. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  584. @end defmac
  585. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  586. Return the number of elements registered into the array designated by @var{interface}.
  587. @end defmac
  588. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  589. Return the size of each element of the array designated by @var{interface}.
  590. @end defmac
  591. @node Accessing Matrix Data Interfaces
  592. @subsubsection Matrix Data Interfaces
  593. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  594. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  595. @end deftypefun
  596. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  597. Return the number of elements on the y-axis of the matrix designated by
  598. @var{handle}.
  599. @end deftypefun
  600. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  601. Return the number of elements between each row of the matrix designated by
  602. @var{handle}. Maybe be equal to nx when there is no padding.
  603. @end deftypefun
  604. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  605. Return the local pointer associated with @var{handle}.
  606. @end deftypefun
  607. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  608. Return the size of the elements registered into the matrix designated by
  609. @var{handle}.
  610. @end deftypefun
  611. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  612. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  613. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  614. used instead.
  615. @end defmac
  616. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  617. Return a device handle for the matrix designated by @var{interface}, to be used
  618. on OpenCL. The offset documented below has to be used in addition to this.
  619. @end defmac
  620. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  621. Return the offset in the matrix designated by @var{interface}, to be used with
  622. the device handle.
  623. @end defmac
  624. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  625. Return the number of elements on the x-axis of the matrix designated by
  626. @var{interface}.
  627. @end defmac
  628. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  629. Return the number of elements on the y-axis of the matrix designated by
  630. @var{interface}.
  631. @end defmac
  632. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  633. Return the number of elements between each row of the matrix designated by
  634. @var{interface}. May be equal to nx when there is no padding.
  635. @end defmac
  636. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  637. Return the size of the elements registered into the matrix designated by
  638. @var{interface}.
  639. @end defmac
  640. @node Accessing Block Data Interfaces
  641. @subsubsection Block Data Interfaces
  642. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  643. Return the number of elements on the x-axis of the block designated by @var{handle}.
  644. @end deftypefun
  645. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  646. Return the number of elements on the y-axis of the block designated by @var{handle}.
  647. @end deftypefun
  648. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  649. Return the number of elements on the z-axis of the block designated by @var{handle}.
  650. @end deftypefun
  651. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  652. Return the number of elements between each row of the block designated by
  653. @var{handle}, in the format of the current memory node.
  654. @end deftypefun
  655. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  656. Return the number of elements between each z plane of the block designated by
  657. @var{handle}, in the format of the current memory node.
  658. @end deftypefun
  659. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  660. Return the local pointer associated with @var{handle}.
  661. @end deftypefun
  662. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  663. Return the size of the elements of the block designated by @var{handle}.
  664. @end deftypefun
  665. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  666. Return a pointer to the block designated by @var{interface}.
  667. @end defmac
  668. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  669. Return a device handle for the block designated by @var{interface}, to be used
  670. on OpenCL. The offset document below has to be used in addition to this.
  671. @end defmac
  672. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  673. Return the offset in the block designated by @var{interface}, to be used with
  674. the device handle.
  675. @end defmac
  676. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  677. Return the number of elements on the x-axis of the block designated by @var{handle}.
  678. @end defmac
  679. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  680. Return the number of elements on the y-axis of the block designated by @var{handle}.
  681. @end defmac
  682. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  683. Return the number of elements on the z-axis of the block designated by @var{handle}.
  684. @end defmac
  685. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  686. Return the number of elements between each row of the block designated by
  687. @var{interface}. May be equal to nx when there is no padding.
  688. @end defmac
  689. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  690. Return the number of elements between each z plane of the block designated by
  691. @var{interface}. May be equal to nx*ny when there is no padding.
  692. @end defmac
  693. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  694. Return the size of the elements of the matrix designated by @var{interface}.
  695. @end defmac
  696. @node Accessing BCSR Data Interfaces
  697. @subsubsection BCSR Data Interfaces
  698. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  699. Return the number of non-zero elements in the matrix designated by @var{handle}.
  700. @end deftypefun
  701. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  702. Return the number of rows (in terms of blocks of size r*c) in the matrix
  703. designated by @var{handle}.
  704. @end deftypefun
  705. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  706. Return the index at which all arrays (the column indexes, the row pointers...)
  707. of the matrix desginated by @var{handle} start.
  708. @end deftypefun
  709. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  710. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  711. @end deftypefun
  712. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  713. Return a pointer to the column index, which holds the positions of the non-zero
  714. entries in the matrix designated by @var{handle}.
  715. @end deftypefun
  716. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  717. Return the row pointer array of the matrix designated by @var{handle}.
  718. @end deftypefun
  719. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  720. Return the number of rows in a block.
  721. @end deftypefun
  722. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  723. Return the numberof columns in a block.
  724. @end deftypefun
  725. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  726. Return the size of the elements in the matrix designated by @var{handle}.
  727. @end deftypefun
  728. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  729. Return the number of non-zero values in the matrix designated by @var{interface}.
  730. @end defmac
  731. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  732. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  733. @end defmac
  734. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  735. Return a pointer to the column index of the matrix designated by @var{interface}.
  736. @end defmac
  737. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  738. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  739. @end defmac
  740. @node Accessing CSR Data Interfaces
  741. @subsubsection CSR Data Interfaces
  742. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  743. Return the number of non-zero values in the matrix designated by @var{handle}.
  744. @end deftypefun
  745. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  746. Return the size of the row pointer array of the matrix designated by @var{handle}.
  747. @end deftypefun
  748. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  749. Return the index at which all arrays (the column indexes, the row pointers...)
  750. of the matrix designated by @var{handle} start.
  751. @end deftypefun
  752. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  753. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  754. @end deftypefun
  755. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  756. Return a local pointer to the column index of the matrix designated by @var{handle}.
  757. @end deftypefun
  758. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  759. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  760. @end deftypefun
  761. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  762. Return the size of the elements registered into the matrix designated by @var{handle}.
  763. @end deftypefun
  764. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  765. Return the number of non-zero values in the matrix designated by @var{interface}.
  766. @end defmac
  767. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  768. Return the size of the row pointer array of the matrix designated by @var{interface}.
  769. @end defmac
  770. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  771. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  772. @end defmac
  773. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  774. Return a pointer to the column index of the matrix designated by @var{interface}.
  775. @end defmac
  776. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  777. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  778. @end defmac
  779. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  780. Return the index at which all arrays (the column indexes, the row pointers...)
  781. of the @var{interface} start.
  782. @end defmac
  783. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  784. Return the size of the elements registered into the matrix designated by @var{interface}.
  785. @end defmac
  786. @node Data Partition
  787. @section Data Partition
  788. @menu
  789. * Basic API::
  790. * Predefined filter functions::
  791. @end menu
  792. @node Basic API
  793. @subsection Basic API
  794. @deftp {Data Type} {struct starpu_data_filter}
  795. The filter structure describes a data partitioning operation, to be given to the
  796. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  797. for an example. The different fields are:
  798. @table @asis
  799. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  800. This function fills the @code{child_interface} structure with interface
  801. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  802. @item @code{unsigned nchildren}
  803. This is the number of parts to partition the data into.
  804. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  805. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  806. children depends on the actual data (e.g. the number of blocks in a sparse
  807. matrix).
  808. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  809. In case the resulting children use a different data interface, this function
  810. returns which interface is used by child number @code{id}.
  811. @item @code{unsigned filter_arg}
  812. Allow to define an additional parameter for the filter function.
  813. @item @code{void *filter_arg_ptr}
  814. Allow to define an additional pointer parameter for the filter
  815. function, such as the sizes of the different parts.
  816. @end table
  817. @end deftp
  818. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  819. @anchor{starpu_data_partition}
  820. This requests partitioning one StarPU data @var{initial_handle} into several
  821. subdata according to the filter @var{f}, as shown in the following example:
  822. @cartouche
  823. @smallexample
  824. struct starpu_data_filter f = @{
  825. .filter_func = starpu_vertical_block_filter_func,
  826. .nchildren = nslicesx,
  827. .get_nchildren = NULL,
  828. .get_child_ops = NULL
  829. @};
  830. starpu_data_partition(A_handle, &f);
  831. @end smallexample
  832. @end cartouche
  833. @end deftypefun
  834. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  835. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  836. collected back into one big piece in the @var{gathering_node} (usually 0).
  837. @cartouche
  838. @smallexample
  839. starpu_data_unpartition(A_handle, 0);
  840. @end smallexample
  841. @end cartouche
  842. @end deftypefun
  843. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  844. This function returns the number of children.
  845. @end deftypefun
  846. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  847. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  848. @end deftypefun
  849. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  850. After partitioning a StarPU data by applying a filter,
  851. @code{starpu_data_get_sub_data} can be used to get handles for each of
  852. the data portions. @var{root_data} is the parent data that was
  853. partitioned. @var{depth} is the number of filters to traverse (in
  854. case several filters have been applied, to e.g. partition in row
  855. blocks, and then in column blocks), and the subsequent
  856. parameters are the indexes. The function returns a handle to the
  857. subdata.
  858. @cartouche
  859. @smallexample
  860. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  861. @end smallexample
  862. @end cartouche
  863. @end deftypefun
  864. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  865. This function is similar to @code{starpu_data_get_sub_data} but uses a
  866. va_list for the parameter list.
  867. @end deftypefun
  868. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  869. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  870. recursively. @var{nfilters} pointers to variables of the type
  871. starpu_data_filter should be given.
  872. @end deftypefun
  873. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  874. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  875. recursively. It uses a va_list of pointers to variables of the typer
  876. starpu_data_filter.
  877. @end deftypefun
  878. @node Predefined filter functions
  879. @subsection Predefined filter functions
  880. @menu
  881. * Partitioning BCSR Data::
  882. * Partitioning BLAS interface::
  883. * Partitioning Vector Data::
  884. * Partitioning Block Data::
  885. @end menu
  886. This section gives a partial list of the predefined partitioning functions.
  887. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  888. list can be found in @code{starpu_data_filters.h} .
  889. @node Partitioning BCSR Data
  890. @subsubsection Partitioning BCSR Data
  891. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  892. This partitions a block-sparse matrix into dense matrices.
  893. @end deftypefun
  894. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  895. This partitions a block-sparse matrix into vertical block-sparse matrices.
  896. @end deftypefun
  897. @node Partitioning BLAS interface
  898. @subsubsection Partitioning BLAS interface
  899. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  900. This partitions a dense Matrix into horizontal blocks.
  901. @end deftypefun
  902. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  903. This partitions a dense Matrix into vertical blocks.
  904. @end deftypefun
  905. @node Partitioning Vector Data
  906. @subsubsection Partitioning Vector Data
  907. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  908. Return in @code{*@var{child_interface}} the @var{id}th element of the
  909. vector represented by @var{father_interface} once partitioned in
  910. @var{nparts} chunks of equal size.
  911. @end deftypefun
  912. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  913. Return in @code{*@var{child_interface}} the @var{id}th element of the
  914. vector represented by @var{father_interface} once partitioned into
  915. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  916. @code{*@var{f}}.
  917. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  918. @code{uint32_t} elements, each of which specifies the number of elements
  919. in each chunk of the partition.
  920. @end deftypefun
  921. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  922. Return in @code{*@var{child_interface}} the @var{id}th element of the
  923. vector represented by @var{father_interface} once partitioned in two
  924. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  925. @code{0} or @code{1}.
  926. @end deftypefun
  927. @node Partitioning Block Data
  928. @subsubsection Partitioning Block Data
  929. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  930. This partitions a 3D matrix along the X axis.
  931. @end deftypefun
  932. @node Codelets and Tasks
  933. @section Codelets and Tasks
  934. This section describes the interface to manipulate codelets and tasks.
  935. @deftp {Data Type} {enum starpu_codelet_type}
  936. Describes the type of parallel task. The different values are:
  937. @table @asis
  938. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  939. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  940. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  941. @code{starpu_combined_worker_get_rank} to distribute the work
  942. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  943. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  944. determine how many threads should be started.
  945. @end table
  946. See @ref{Parallel Tasks} for details.
  947. @end deftp
  948. @defmac STARPU_CPU
  949. This macro is used when setting the field @code{where} of a @code{struct
  950. starpu_codelet} to specify the codelet may be executed on a CPU
  951. processing unit.
  952. @end defmac
  953. @defmac STARPU_CUDA
  954. This macro is used when setting the field @code{where} of a @code{struct
  955. starpu_codelet} to specify the codelet may be executed on a CUDA
  956. processing unit.
  957. @end defmac
  958. @defmac STARPU_SPU
  959. This macro is used when setting the field @code{where} of a @code{struct
  960. starpu_codelet} to specify the codelet may be executed on a SPU
  961. processing unit.
  962. @end defmac
  963. @defmac STARPU_GORDON
  964. This macro is used when setting the field @code{where} of a @code{struct
  965. starpu_codelet} to specify the codelet may be executed on a Cell
  966. processing unit.
  967. @end defmac
  968. @defmac STARPU_OPENCL
  969. This macro is used when setting the field @code{where} of a @code{struct
  970. starpu_codelet} to specify the codelet may be executed on a OpenCL
  971. processing unit.
  972. @end defmac
  973. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  974. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  975. with this macro indicates the codelet will have several
  976. implementations. The use of this macro is deprecated. One should
  977. always only define the field @code{cpu_funcs}.
  978. @end defmac
  979. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  980. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  981. with this macro indicates the codelet will have several
  982. implementations. The use of this macro is deprecated. One should
  983. always only define the field @code{cuda_funcs}.
  984. @end defmac
  985. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  986. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  987. with this macro indicates the codelet will have several
  988. implementations. The use of this macro is deprecated. One should
  989. always only define the field @code{opencl_funcs}.
  990. @end defmac
  991. @deftp {Data Type} {struct starpu_codelet}
  992. The codelet structure describes a kernel that is possibly implemented on various
  993. targets. For compatibility, make sure to initialize the whole structure to zero.
  994. @table @asis
  995. @item @code{uint32_t where} (optional)
  996. Indicates which types of processing units are able to execute the
  997. codelet. The different values
  998. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  999. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  1000. on which types of processing units the codelet can be executed.
  1001. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1002. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  1003. indicates that it is only available on Cell SPUs. If the field is
  1004. unset, its value will be automatically set based on the availability
  1005. of the @code{XXX_funcs} fields defined below.
  1006. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1007. Defines a function which should return 1 if the worker designated by @var{workerid} can execute the @var{nimpl}th implementation of the given@var{task}, 0 otherwise.
  1008. @item @code{enum starpu_codelet_type type} (optional)
  1009. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1010. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1011. implementation is also available. See @ref{Parallel Tasks} for details.
  1012. @item @code{int max_parallelism} (optional)
  1013. If a parallel implementation is available, this denotes the maximum combined
  1014. worker size that StarPU will use to execute parallel tasks for this codelet.
  1015. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1016. This field has been made deprecated. One should use instead the
  1017. @code{cpu_funcs} field.
  1018. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1019. Is an array of function pointers to the CPU implementations of the codelet.
  1020. It must be terminated by a NULL value.
  1021. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1022. argument being the array of data managed by the data management library, and
  1023. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1024. field of the @code{starpu_task} structure.
  1025. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1026. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1027. field, it must be non-null otherwise.
  1028. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1029. This field has been made deprecated. One should use instead the
  1030. @code{cuda_funcs} field.
  1031. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1032. Is an array of function pointers to the CUDA implementations of the codelet.
  1033. It must be terminated by a NULL value.
  1034. @emph{The functions must be host-functions written in the CUDA runtime
  1035. API}. Their prototype must
  1036. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1037. If the @code{where} field is set, then the @code{cuda_funcs}
  1038. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1039. field, it must be non-null otherwise.
  1040. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1041. This field has been made deprecated. One should use instead the
  1042. @code{opencl_funcs} field.
  1043. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1044. Is an array of function pointers to the OpenCL implementations of the codelet.
  1045. It must be terminated by a NULL value.
  1046. The functions prototype must be:
  1047. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1048. If the @code{where} field is set, then the @code{opencl_funcs} field
  1049. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1050. field, it must be non-null otherwise.
  1051. @item @code{uint8_t gordon_func} (optional)
  1052. This field has been made deprecated. One should use instead the
  1053. @code{gordon_funcs} field.
  1054. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1055. Is an array of index of the Cell SPU implementations of the codelet within the
  1056. Gordon library.
  1057. It must be terminated by a NULL value.
  1058. See Gordon documentation for more details on how to register a kernel and
  1059. retrieve its index.
  1060. @item @code{unsigned nbuffers}
  1061. Specifies the number of arguments taken by the codelet. These arguments are
  1062. managed by the DSM and are accessed from the @code{void *buffers[]}
  1063. array. The constant argument passed with the @code{cl_arg} field of the
  1064. @code{starpu_task} structure is not counted in this number. This value should
  1065. not be above @code{STARPU_NMAXBUFS}.
  1066. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1067. Is an array of @code{enum starpu_access_mode}. It describes the
  1068. required access modes to the data neeeded by the codelet (e.g.
  1069. @code{STARPU_RW}). The number of entries in this array must be
  1070. specified in the @code{nbuffers} field (defined above), and should not
  1071. exceed @code{STARPU_NMAXBUFS}.
  1072. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1073. option when configuring StarPU.
  1074. @item @code{struct starpu_perfmodel *model} (optional)
  1075. This is a pointer to the task duration performance model associated to this
  1076. codelet. This optional field is ignored when set to @code{NULL}.
  1077. @item @code{struct starpu_perfmodel *power_model} (optional)
  1078. This is a pointer to the task power consumption performance model associated
  1079. to this codelet. This optional field is ignored when set to @code{NULL}.
  1080. In the case of parallel codelets, this has to account for all processing units
  1081. involved in the parallel execution.
  1082. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1083. Statistics collected at runtime: this is filled by StarPU and should not be
  1084. accessed directly, but for example by calling the
  1085. @code{starpu_display_codelet_stats} function (See
  1086. @ref{starpu_display_codelet_stats} for details).
  1087. @item @code{const char *name} (optional)
  1088. Define the name of the codelet. This can be useful for debugging purposes.
  1089. @end table
  1090. @end deftp
  1091. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1092. Initialize @var{cl} with default values. Codelets should preferably be
  1093. initialized statically as shown in @ref{Defining a Codelet}. However
  1094. such a initialisation is not always possible, e.g. when using C++.
  1095. @end deftypefun
  1096. @deftp {Data Type} {enum starpu_task_status}
  1097. State of a task, can be either of
  1098. @table @asis
  1099. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1100. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1101. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1102. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1103. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1104. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1105. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1106. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1107. @end table
  1108. @end deftp
  1109. @deftp {Data Type} {struct starpu_buffer_descr}
  1110. This type is used to describe a data handle along with an
  1111. access mode.
  1112. @table @asis
  1113. @item @code{starpu_data_handle_t handle} describes a data,
  1114. @item @code{enum starpu_access_mode mode} describes its access mode
  1115. @end table
  1116. @end deftp
  1117. @deftp {Data Type} {struct starpu_task}
  1118. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1119. processing units managed by StarPU. It instantiates a codelet. It can either be
  1120. allocated dynamically with the @code{starpu_task_create} method, or declared
  1121. statically. In the latter case, the programmer has to zero the
  1122. @code{starpu_task} structure and to fill the different fields properly. The
  1123. indicated default values correspond to the configuration of a task allocated
  1124. with @code{starpu_task_create}.
  1125. @table @asis
  1126. @item @code{struct starpu_codelet *cl}
  1127. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1128. describes where the kernel should be executed, and supplies the appropriate
  1129. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1130. such empty tasks can be useful for synchronization purposes.
  1131. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1132. This field has been made deprecated. One should use instead the
  1133. @code{handles} field to specify the handles to the data accessed by
  1134. the task. The access modes are now defined in the @code{mode} field of
  1135. the @code{struct starpu_codelet cl} field defined above.
  1136. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1137. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1138. to the different pieces of data accessed by the task. The number
  1139. of entries in this array must be specified in the @code{nbuffers} field of the
  1140. @code{struct starpu_codelet} structure, and should not exceed
  1141. @code{STARPU_NMAXBUFS}.
  1142. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1143. option when configuring StarPU.
  1144. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1145. The actual data pointers to the memory node where execution will happen, managed
  1146. by the DSM.
  1147. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1148. This pointer is passed to the codelet through the second argument
  1149. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1150. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1151. argument.
  1152. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1153. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1154. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1155. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1156. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1157. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1158. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1159. codelets, where the @code{cl_arg} pointer is given as such.
  1160. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1161. This is a function pointer of prototype @code{void (*f)(void *)} which
  1162. specifies a possible callback. If this pointer is non-null, the callback
  1163. function is executed @emph{on the host} after the execution of the task. The
  1164. callback is passed the value contained in the @code{callback_arg} field. No
  1165. callback is executed if the field is set to @code{NULL}.
  1166. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1167. This is the pointer passed to the callback function. This field is ignored if
  1168. the @code{callback_func} is set to @code{NULL}.
  1169. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1170. If set, this flag indicates that the task should be associated with the tag
  1171. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1172. with the task and to express task dependencies easily.
  1173. @item @code{starpu_tag_t tag_id}
  1174. This fields contains the tag associated to the task if the @code{use_tag} field
  1175. was set, it is ignored otherwise.
  1176. @item @code{unsigned synchronous}
  1177. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1178. returns only when the task has been executed (or if no worker is able to
  1179. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1180. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1181. This field indicates a level of priority for the task. This is an integer value
  1182. that must be set between the return values of the
  1183. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1184. and that of the @code{starpu_sched_get_max_priority} for the most important
  1185. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1186. are provided for convenience and respectively returns value of
  1187. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1188. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1189. order to allow static task initialization. Scheduling strategies that take
  1190. priorities into account can use this parameter to take better scheduling
  1191. decisions, but the scheduling policy may also ignore it.
  1192. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1193. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1194. task to the worker specified by the @code{workerid} field.
  1195. @item @code{unsigned workerid} (optional)
  1196. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1197. which is the identifier of the worker that should process this task (as
  1198. returned by @code{starpu_worker_get_id}). This field is ignored if
  1199. @code{execute_on_a_specific_worker} field is set to 0.
  1200. @item @code{starpu_task_bundle_t bundle} (optional)
  1201. The bundle that includes this task. If no bundle is used, this should be NULL.
  1202. @item @code{int detach} (optional) (default: @code{1})
  1203. If this flag is set, it is not possible to synchronize with the task
  1204. by the means of @code{starpu_task_wait} later on. Internal data structures
  1205. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1206. flag is not set.
  1207. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1208. If this flag is set, the task structure will automatically be freed, either
  1209. after the execution of the callback if the task is detached, or during
  1210. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1211. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1212. called explicitly. Setting this flag for a statically allocated task structure
  1213. will result in undefined behaviour. The flag is set to 1 when the task is
  1214. created by calling @code{starpu_task_create()}. Note that
  1215. @code{starpu_task_wait_for_all} will not free any task.
  1216. @item @code{int regenerate} (optional)
  1217. If this flag is set, the task will be re-submitted to StarPU once it has been
  1218. executed. This flag must not be set if the destroy flag is set too.
  1219. @item @code{enum starpu_task_status status} (optional)
  1220. Current state of the task.
  1221. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1222. Profiling information for the task.
  1223. @item @code{double predicted} (output field)
  1224. Predicted duration of the task. This field is only set if the scheduling
  1225. strategy used performance models.
  1226. @item @code{double predicted_transfer} (optional)
  1227. Predicted data transfer duration for the task in microseconds. This field is
  1228. only valid if the scheduling strategy uses performance models.
  1229. @item @code{struct starpu_task *prev}
  1230. A pointer to the previous task. This should only be used by StarPU.
  1231. @item @code{struct starpu_task *next}
  1232. A pointer to the next task. This should only be used by StarPU.
  1233. @item @code{unsigned int mf_skip}
  1234. This is only used for tasks that use multiformat handle. This should only be
  1235. used by StarPU.
  1236. @item @code{void *starpu_private}
  1237. This is private to StarPU, do not modify. If the task is allocated by hand
  1238. (without starpu_task_create), this field should be set to NULL.
  1239. @item @code{int magic}
  1240. This field is set when initializing a task. It prevents a task from being
  1241. submitted if it has not been properly initialized.
  1242. @end table
  1243. @end deftp
  1244. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1245. Initialize @var{task} with default values. This function is implicitly
  1246. called by @code{starpu_task_create}. By default, tasks initialized with
  1247. @code{starpu_task_init} must be deinitialized explicitly with
  1248. @code{starpu_task_deinit}. Tasks can also be initialized statically,
  1249. using @code{STARPU_TASK_INITIALIZER} defined below.
  1250. @end deftypefun
  1251. @defmac STARPU_TASK_INITIALIZER
  1252. It is possible to initialize statically allocated tasks with this
  1253. value. This is equivalent to initializing a starpu_task structure with
  1254. the @code{starpu_task_init} function defined above.
  1255. @end defmac
  1256. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1257. Allocate a task structure and initialize it with default values. Tasks
  1258. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1259. task is terminated. This means that the task pointer can not be used any more
  1260. once the task is submitted, since it can be executed at any time (unless
  1261. dependencies make it wait) and thus freed at any time.
  1262. If the destroy flag is explicitly unset, the resources used
  1263. by the task have to be freed by calling
  1264. @code{starpu_task_destroy}.
  1265. @end deftypefun
  1266. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1267. Release all the structures automatically allocated to execute @var{task}, but
  1268. not the task structure itself. It is thus useful for statically allocated tasks
  1269. for instance. It is called automatically by @code{starpu_task_destroy}. It
  1270. has to be called only after explicitly waiting for the task or after
  1271. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1272. still manipulates the task after calling the callback).
  1273. @end deftypefun
  1274. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1275. Free the resource allocated during @code{starpu_task_create} and
  1276. associated with @var{task}. This function is already called automatically
  1277. after the execution of a task when the @code{destroy} flag of the
  1278. @code{starpu_task} structure is set, which is the default for tasks created by
  1279. @code{starpu_task_create}. Calling this function on a statically allocated task
  1280. results in an undefined behaviour.
  1281. @end deftypefun
  1282. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1283. This function blocks until @var{task} has been executed. It is not possible to
  1284. synchronize with a task more than once. It is not possible to wait for
  1285. synchronous or detached tasks.
  1286. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1287. indicates that the specified task was either synchronous or detached.
  1288. @end deftypefun
  1289. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1290. This function submits @var{task} to StarPU. Calling this function does
  1291. not mean that the task will be executed immediately as there can be data or task
  1292. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1293. scheduling this task with respect to such dependencies.
  1294. This function returns immediately if the @code{synchronous} field of the
  1295. @code{starpu_task} structure was set to 0, and block until the termination of
  1296. the task otherwise. It is also possible to synchronize the application with
  1297. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1298. function for instance.
  1299. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1300. means that there is no worker able to process this task (e.g. there is no GPU
  1301. available and this task is only implemented for CUDA devices).
  1302. @end deftypefun
  1303. @deftypefun int starpu_task_wait_for_all (void)
  1304. This function blocks until all the tasks that were submitted are terminated. It
  1305. does not destroy these tasks.
  1306. @end deftypefun
  1307. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1308. This function returns the task currently executed by the worker, or
  1309. NULL if it is called either from a thread that is not a task or simply
  1310. because there is no task being executed at the moment.
  1311. @end deftypefun
  1312. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1313. @anchor{starpu_display_codelet_stats}
  1314. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1315. @end deftypefun
  1316. @deftypefun int starpu_task_wait_for_no_ready (void)
  1317. This function waits until there is no more ready task.
  1318. @end deftypefun
  1319. @c Callbacks: what can we put in callbacks ?
  1320. @node Explicit Dependencies
  1321. @section Explicit Dependencies
  1322. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1323. Declare task dependencies between a @var{task} and an array of tasks of length
  1324. @var{ndeps}. This function must be called prior to the submission of the task,
  1325. but it may called after the submission or the execution of the tasks in the
  1326. array, provided the tasks are still valid (ie. they were not automatically
  1327. destroyed). Calling this function on a task that was already submitted or with
  1328. an entry of @var{task_array} that is not a valid task anymore results in an
  1329. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1330. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1331. same task, in this case, the dependencies are added. It is possible to have
  1332. redundancy in the task dependencies.
  1333. @end deftypefun
  1334. @deftp {Data Type} {starpu_tag_t}
  1335. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1336. dependencies between tasks by the means of those tags. To do so, fill the
  1337. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1338. be arbitrary) and set the @code{use_tag} field to 1.
  1339. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1340. not be started until the tasks which holds the declared dependency tags are
  1341. completed.
  1342. @end deftp
  1343. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1344. Specify the dependencies of the task identified by tag @var{id}. The first
  1345. argument specifies the tag which is configured, the second argument gives the
  1346. number of tag(s) on which @var{id} depends. The following arguments are the
  1347. tags which have to be terminated to unlock the task.
  1348. This function must be called before the associated task is submitted to StarPU
  1349. with @code{starpu_task_submit}.
  1350. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1351. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1352. typically need to be explicitly casted. Using the
  1353. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1354. @cartouche
  1355. @smallexample
  1356. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1357. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1358. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1359. @end smallexample
  1360. @end cartouche
  1361. @end deftypefun
  1362. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1363. This function is similar to @code{starpu_tag_declare_deps}, except
  1364. that its does not take a variable number of arguments but an array of
  1365. tags of size @var{ndeps}.
  1366. @cartouche
  1367. @smallexample
  1368. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1369. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1370. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1371. @end smallexample
  1372. @end cartouche
  1373. @end deftypefun
  1374. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1375. This function blocks until the task associated to tag @var{id} has been
  1376. executed. This is a blocking call which must therefore not be called within
  1377. tasks or callbacks, but only from the application directly. It is possible to
  1378. synchronize with the same tag multiple times, as long as the
  1379. @code{starpu_tag_remove} function is not called. Note that it is still
  1380. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1381. data structure was freed (e.g. if the @code{destroy} flag of the
  1382. @code{starpu_task} was enabled).
  1383. @end deftypefun
  1384. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1385. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1386. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1387. terminated.
  1388. @end deftypefun
  1389. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1390. This function releases the resources associated to tag @var{id}. It can be
  1391. called once the corresponding task has been executed and when there is
  1392. no other tag that depend on this tag anymore.
  1393. @end deftypefun
  1394. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1395. This function explicitly unlocks tag @var{id}. It may be useful in the
  1396. case of applications which execute part of their computation outside StarPU
  1397. tasks (e.g. third-party libraries). It is also provided as a
  1398. convenient tool for the programmer, for instance to entirely construct the task
  1399. DAG before actually giving StarPU the opportunity to execute the tasks.
  1400. @end deftypefun
  1401. @node Implicit Data Dependencies
  1402. @section Implicit Data Dependencies
  1403. In this section, we describe how StarPU makes it possible to insert implicit
  1404. task dependencies in order to enforce sequential data consistency. When this
  1405. data consistency is enabled on a specific data handle, any data access will
  1406. appear as sequentially consistent from the application. For instance, if the
  1407. application submits two tasks that access the same piece of data in read-only
  1408. mode, and then a third task that access it in write mode, dependencies will be
  1409. added between the two first tasks and the third one. Implicit data dependencies
  1410. are also inserted in the case of data accesses from the application.
  1411. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1412. Set the default sequential consistency flag. If a non-zero value is passed, a
  1413. sequential data consistency will be enforced for all handles registered after
  1414. this function call, otherwise it is disabled. By default, StarPU enables
  1415. sequential data consistency. It is also possible to select the data consistency
  1416. mode of a specific data handle with the
  1417. @code{starpu_data_set_sequential_consistency_flag} function.
  1418. @end deftypefun
  1419. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1420. Return the default sequential consistency flag
  1421. @end deftypefun
  1422. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1423. Sets the data consistency mode associated to a data handle. The consistency
  1424. mode set using this function has the priority over the default mode which can
  1425. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1426. @end deftypefun
  1427. @node Performance Model API
  1428. @section Performance Model API
  1429. @deftp {Data Type} {enum starpu_perf_archtype}
  1430. Enumerates the various types of architectures.
  1431. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1432. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1433. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1434. @table @asis
  1435. @item @code{STARPU_CPU_DEFAULT}
  1436. @item @code{STARPU_CUDA_DEFAULT}
  1437. @item @code{STARPU_OPENCL_DEFAULT}
  1438. @item @code{STARPU_GORDON_DEFAULT}
  1439. @end table
  1440. @end deftp
  1441. @deftp {Data Type} {enum starpu_perfmodel_type}
  1442. The possible values are:
  1443. @table @asis
  1444. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1445. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1446. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1447. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1448. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1449. @end table
  1450. @end deftp
  1451. @deftp {Data Type} {struct starpu_perfmodel}
  1452. @anchor{struct starpu_perfmodel}
  1453. contains all information about a performance model. At least the
  1454. @code{type} and @code{symbol} fields have to be filled when defining a
  1455. performance model for a codelet. If not provided, other fields have to be zero.
  1456. @table @asis
  1457. @item @code{type}
  1458. is the type of performance model @code{enum starpu_perfmodel_type}:
  1459. @code{STARPU_HISTORY_BASED},
  1460. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1461. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1462. @code{per_arch} has to be filled with functions which return the cost in
  1463. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1464. a function that returns the cost in micro-seconds on a CPU, timing on other
  1465. archs will be determined by multiplying by an arch-specific factor.
  1466. @item @code{const char *symbol}
  1467. is the symbol name for the performance model, which will be used as
  1468. file name to store the model.
  1469. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1470. This field is deprecated. Use instead the @code{cost_function} field.
  1471. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1472. Used by @code{STARPU_COMMON}: takes a task and
  1473. implementation number, and must return a task duration estimation in micro-seconds.
  1474. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1475. Used by @code{STARPU_HISTORY_BASED} and
  1476. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1477. implementation number, and returns the size to be used as index for
  1478. history and regression.
  1479. @item @code{struct starpu_per_arch_perfmodel per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1480. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1481. starpu_per_arch_perfmodel} structures.
  1482. @item @code{unsigned is_loaded}
  1483. Whether the performance model is already loaded from the disk.
  1484. @item @code{unsigned benchmarking}
  1485. Whether the performance model is still being calibrated.
  1486. @item @code{pthread_rwlock_t model_rwlock}
  1487. Lock to protect concurrency between loading from disk (W), updating the values
  1488. (W), and making a performance estimation (R).
  1489. @end table
  1490. @end deftp
  1491. @deftp {Data Type} {struct starpu_regression_model}
  1492. @table @asis
  1493. @item @code{double sumlny} sum of ln(measured)
  1494. @item @code{double sumlnx} sum of ln(size)
  1495. @item @code{double sumlnx2} sum of ln(size)^2
  1496. @item @code{unsigned long minx} minimum size
  1497. @item @code{unsigned long maxx} maximum size
  1498. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1499. @item @code{double alpha} estimated = alpha * size ^ beta
  1500. @item @code{double beta}
  1501. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1502. @item @code{double a, b, c} estimaed = a size ^b + c
  1503. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1504. @item @code{unsigned nsample} number of sample values for non-linear regression
  1505. @end table
  1506. @end deftp
  1507. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1508. contains information about the performance model of a given arch.
  1509. @table @asis
  1510. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1511. This field is deprecated. Use instead the @code{cost_function} field.
  1512. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1513. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1514. target arch and implementation number (as mere conveniency, since the array
  1515. is already indexed by these), and must return a task duration estimation in
  1516. micro-seconds.
  1517. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1518. starpu_perf_archtype arch, unsigned nimpl)}
  1519. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1520. case it depends on the architecture-specific implementation.
  1521. @item @code{struct starpu_htbl32_node *history}
  1522. The history of performance measurements.
  1523. @item @code{struct starpu_history_list *list}
  1524. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1525. records all execution history measures.
  1526. @item @code{struct starpu_regression_model regression}
  1527. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1528. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1529. regression.
  1530. @end table
  1531. @end deftp
  1532. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1533. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1534. @end deftypefun
  1535. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1536. returns the path to the debugging information for the performance model.
  1537. @end deftypefun
  1538. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1539. returns the architecture name for @var{arch}.
  1540. @end deftypefun
  1541. @deftypefun void starpu_force_bus_sampling (void)
  1542. forces sampling the bus performance model again.
  1543. @end deftypefun
  1544. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1545. returns the architecture type of a given worker.
  1546. @end deftypefun
  1547. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1548. prints a list of all performance models on @var{output}.
  1549. @end deftypefun
  1550. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1551. prints a matrix of bus bandwidths on @var{f}.
  1552. @end deftypefun
  1553. @node Profiling API
  1554. @section Profiling API
  1555. @deftypefun int starpu_profiling_status_set (int @var{status})
  1556. Thie function sets the profiling status. Profiling is activated by passing
  1557. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1558. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1559. resets all profiling measurements. When profiling is enabled, the
  1560. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1561. to a valid @code{struct starpu_task_profiling_info} structure containing
  1562. information about the execution of the task.
  1563. Negative return values indicate an error, otherwise the previous status is
  1564. returned.
  1565. @end deftypefun
  1566. @deftypefun int starpu_profiling_status_get (void)
  1567. Return the current profiling status or a negative value in case there was an error.
  1568. @end deftypefun
  1569. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1570. This function sets the ID used for profiling trace filename
  1571. @end deftypefun
  1572. @deftp {Data Type} {struct starpu_task_profiling_info}
  1573. This structure contains information about the execution of a task. It is
  1574. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1575. structure if profiling was enabled. The different fields are:
  1576. @table @asis
  1577. @item @code{struct timespec submit_time}
  1578. Date of task submission (relative to the initialization of StarPU).
  1579. @item @code{struct timespec push_start_time}
  1580. Time when the task was submitted to the scheduler.
  1581. @item @code{struct timespec push_end_time}
  1582. Time when the scheduler finished with the task submission.
  1583. @item @code{struct timespec pop_start_time}
  1584. Time when the scheduler started to be requested for a task, and eventually gave
  1585. that task.
  1586. @item @code{struct timespec pop_end_time}
  1587. Time when the scheduler finished providing the task for execution.
  1588. @item @code{struct timespec acquire_data_start_time}
  1589. Time when the worker started fetching input data.
  1590. @item @code{struct timespec acquire_data_end_time}
  1591. Time when the worker finished fetching input data.
  1592. @item @code{struct timespec start_time}
  1593. Date of task execution beginning (relative to the initialization of StarPU).
  1594. @item @code{struct timespec end_time}
  1595. Date of task execution termination (relative to the initialization of StarPU).
  1596. @item @code{struct timespec release_data_start_time}
  1597. Time when the worker started releasing data.
  1598. @item @code{struct timespec release_data_end_time}
  1599. Time when the worker finished releasing data.
  1600. @item @code{struct timespec callback_start_time}
  1601. Time when the worker started the application callback for the task.
  1602. @item @code{struct timespec callback_end_time}
  1603. Time when the worker finished the application callback for the task.
  1604. @item @code{workerid}
  1605. Identifier of the worker which has executed the task.
  1606. @item @code{uint64_t used_cycles}
  1607. Number of cycles used by the task, only available in the MoviSim
  1608. @item @code{uint64_t stall_cycles}
  1609. Number of cycles stalled within the task, only available in the MoviSim
  1610. @item @code{double power_consumed}
  1611. Power consumed by the task, only available in the MoviSim
  1612. @end table
  1613. @end deftp
  1614. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1615. This structure contains the profiling information associated to a
  1616. worker. The different fields are:
  1617. @table @asis
  1618. @item @code{struct timespec start_time}
  1619. Starting date for the reported profiling measurements.
  1620. @item @code{struct timespec total_time}
  1621. Duration of the profiling measurement interval.
  1622. @item @code{struct timespec executing_time}
  1623. Time spent by the worker to execute tasks during the profiling measurement interval.
  1624. @item @code{struct timespec sleeping_time}
  1625. Time spent idling by the worker during the profiling measurement interval.
  1626. @item @code{int executed_tasks}
  1627. Number of tasks executed by the worker during the profiling measurement interval.
  1628. @item @code{uint64_t used_cycles}
  1629. Number of cycles used by the worker, only available in the MoviSim
  1630. @item @code{uint64_t stall_cycles}
  1631. Number of cycles stalled within the worker, only available in the MoviSim
  1632. @item @code{double power_consumed}
  1633. Power consumed by the worker, only available in the MoviSim
  1634. @end table
  1635. @end deftp
  1636. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1637. Get the profiling info associated to the worker identified by @var{workerid},
  1638. and reset the profiling measurements. If the @var{worker_info} argument is
  1639. NULL, only reset the counters associated to worker @var{workerid}.
  1640. Upon successful completion, this function returns 0. Otherwise, a negative
  1641. value is returned.
  1642. @end deftypefun
  1643. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1644. The different fields are:
  1645. @table @asis
  1646. @item @code{struct timespec start_time}
  1647. Time of bus profiling startup.
  1648. @item @code{struct timespec total_time}
  1649. Total time of bus profiling.
  1650. @item @code{int long long transferred_bytes}
  1651. Number of bytes transferred during profiling.
  1652. @item @code{int transfer_count}
  1653. Number of transfers during profiling.
  1654. @end table
  1655. @end deftp
  1656. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1657. Get the profiling info associated to the worker designated by @var{workerid},
  1658. and reset the profiling measurements. If worker_info is NULL, only reset the
  1659. counters.
  1660. @end deftypefun
  1661. @deftypefun int starpu_bus_get_count (void)
  1662. Return the number of buses in the machine.
  1663. @end deftypefun
  1664. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1665. Return the identifier of the bus between @var{src} and @var{dst}
  1666. @end deftypefun
  1667. @deftypefun int starpu_bus_get_src (int @var{busid})
  1668. Return the source point of bus @var{busid}
  1669. @end deftypefun
  1670. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1671. Return the destination point of bus @var{busid}
  1672. @end deftypefun
  1673. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1674. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1675. @end deftypefun
  1676. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1677. Converts the given timespec @var{ts} into microseconds.
  1678. @end deftypefun
  1679. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1680. Displays statistics about the bus on stderr.
  1681. @end deftypefun
  1682. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1683. Displays statistics about the workers on stderr.
  1684. @end deftypefun
  1685. @node CUDA extensions
  1686. @section CUDA extensions
  1687. @defmac STARPU_USE_CUDA
  1688. This macro is defined when StarPU has been installed with CUDA
  1689. support. It should be used in your code to detect the availability of
  1690. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1691. @end defmac
  1692. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1693. This function gets the current worker's CUDA stream.
  1694. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1695. function is only provided for convenience so that programmers can easily use
  1696. asynchronous operations within codelets without having to create a stream by
  1697. hand. Note that the application is not forced to use the stream provided by
  1698. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1699. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1700. the likelihood of having all transfers overlapped.
  1701. @end deftypefun
  1702. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1703. This function returns a pointer to device properties for worker @var{workerid}
  1704. (assumed to be a CUDA worker).
  1705. @end deftypefun
  1706. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1707. Return the size of the global memory of CUDA device @var{devid}.
  1708. @end deftypefun
  1709. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1710. Report a CUDA error.
  1711. @end deftypefun
  1712. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1713. Calls starpu_cuda_report_error, passing the current function, file and line
  1714. position.
  1715. @end defmac
  1716. @deftypefun void starpu_helper_cublas_init (void)
  1717. This function initializes CUBLAS on every CUDA device.
  1718. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1719. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1720. controlled by StarPU. This call blocks until CUBLAS has been properly
  1721. initialized on every device.
  1722. @end deftypefun
  1723. @deftypefun void starpu_helper_cublas_shutdown (void)
  1724. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1725. @end deftypefun
  1726. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1727. Report a cublas error.
  1728. @end deftypefun
  1729. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1730. Calls starpu_cublas_report_error, passing the current function, file and line
  1731. position.
  1732. @end defmac
  1733. @node OpenCL extensions
  1734. @section OpenCL extensions
  1735. @menu
  1736. * Writing OpenCL kernels:: Writing OpenCL kernels
  1737. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1738. * Loading OpenCL kernels:: Loading OpenCL kernels
  1739. * OpenCL statistics:: Collecting statistics from OpenCL
  1740. * OpenCL utilities:: Utilities for OpenCL
  1741. @end menu
  1742. @defmac STARPU_USE_OPENCL
  1743. This macro is defined when StarPU has been installed with OpenCL
  1744. support. It should be used in your code to detect the availability of
  1745. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1746. @end defmac
  1747. @node Writing OpenCL kernels
  1748. @subsection Writing OpenCL kernels
  1749. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1750. Return the size of global device memory in bytes.
  1751. @end deftypefun
  1752. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1753. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1754. @end deftypefun
  1755. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1756. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1757. @end deftypefun
  1758. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1759. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1760. @end deftypefun
  1761. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1762. Return the context of the current worker.
  1763. @end deftypefun
  1764. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1765. Return the computation kernel command queue of the current worker.
  1766. @end deftypefun
  1767. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1768. Sets the arguments of a given kernel. The list of arguments must be given as
  1769. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1770. The last argument must be 0. Returns the number of arguments that were
  1771. successfully set. In case of failure, @var{err} is set to the error returned by
  1772. OpenCL.
  1773. @end deftypefun
  1774. @node Compiling OpenCL kernels
  1775. @subsection Compiling OpenCL kernels
  1776. Source codes for OpenCL kernels can be stored in a file or in a
  1777. string. StarPU provides functions to build the program executable for
  1778. each available OpenCL device as a @code{cl_program} object. This
  1779. program executable can then be loaded within a specific queue as
  1780. explained in the next section. These are only helpers, Applications
  1781. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1782. use (e.g. different programs on the different OpenCL devices, for
  1783. relocation purpose for instance).
  1784. @deftp {Data Type} {struct starpu_opencl_program}
  1785. Stores the OpenCL programs as compiled for the different OpenCL devices.
  1786. @table @asis
  1787. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  1788. Stores each program for each OpenCL device.
  1789. @end table
  1790. @end deftp
  1791. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1792. @anchor{starpu_opencl_load_opencl_from_file}
  1793. This function compiles an OpenCL source code stored in a file.
  1794. @end deftypefun
  1795. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1796. This function compiles an OpenCL source code stored in a string.
  1797. @end deftypefun
  1798. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1799. This function unloads an OpenCL compiled code.
  1800. @end deftypefun
  1801. @node Loading OpenCL kernels
  1802. @subsection Loading OpenCL kernels
  1803. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  1804. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  1805. queue returned in @var{queue}, using program @var{opencl_programs} and name
  1806. @var{kernel_name}
  1807. @end deftypefun
  1808. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1809. Release the given @var{kernel}, to be called after kernel execution.
  1810. @end deftypefun
  1811. @node OpenCL statistics
  1812. @subsection OpenCL statistics
  1813. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1814. This function allows to collect statistics on a kernel execution.
  1815. After termination of the kernels, the OpenCL codelet should call this function
  1816. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1817. collect statistics about the kernel execution (used cycles, consumed power).
  1818. @end deftypefun
  1819. @node OpenCL utilities
  1820. @subsection OpenCL utilities
  1821. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1822. Given a valid error @var{status}, prints the corresponding error message on
  1823. stdout, along with the given function name @var{func}, the given filename
  1824. @var{file}, the given line number @var{line} and the given message @var{msg}.
  1825. @end deftypefun
  1826. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  1827. Call the function @code{starpu_opencl_display_error} with the given
  1828. error @var{status}, the current function name, current file and line
  1829. number, and a empty message.
  1830. @end defmac
  1831. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1832. Call the function @code{starpu_opencl_display_error} and abort.
  1833. @end deftypefun
  1834. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  1835. Call the function @code{starpu_opencl_report_error} with the given
  1836. error @var{status}, with the current function name, current file and
  1837. line number, and a empty message.
  1838. @end defmac
  1839. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  1840. Call the function @code{starpu_opencl_report_error} with the given
  1841. message and the given error @var{status}, with the current function
  1842. name, current file and line number.
  1843. @end defmac
  1844. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  1845. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  1846. valid combination of cl_mem_flags values.
  1847. @end deftypefun
  1848. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl_async_sync ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1849. Copy @var{size} bytes asynchronously from the given @var{ptr} on
  1850. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  1851. @var{offset} is the offset, in bytes, in @var{buffer}.
  1852. @var{event} can be used to wait for this particular copy to complete. It can be
  1853. NULL.
  1854. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1855. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1856. was successful, or to 0 if event was NULL.
  1857. @end deftypefun
  1858. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1859. Copy @var{size} bytes from the given @var{ptr} on @var{src_node} to the
  1860. given @var{buffer} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1861. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1862. complete. It can be NULL.
  1863. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1864. otherwise.
  1865. @end deftypefun
  1866. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram_async_sync (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1867. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  1868. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  1869. @var{offset} is the offset, in bytes, in @var{buffer}.
  1870. @var{event} can be used to wait for this particular copy to complete. It can be
  1871. NULL.
  1872. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1873. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1874. was successful, or to 0 if event was NULL.
  1875. @end deftypefun
  1876. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1877. Copy @var{size} bytes from the given @var{buffer} on @var{src_node} to the
  1878. given @var{ptr} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1879. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1880. complete. It can be NULL.
  1881. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1882. otherwise.
  1883. @end deftypefun
  1884. @node Cell extensions
  1885. @section Cell extensions
  1886. nothing yet.
  1887. @node Miscellaneous helpers
  1888. @section Miscellaneous helpers
  1889. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1890. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1891. The @var{asynchronous} parameter indicates whether the function should
  1892. block or not. In the case of an asynchronous call, it is possible to
  1893. synchronize with the termination of this operation either by the means of
  1894. implicit dependencies (if enabled) or by calling
  1895. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1896. this callback function is executed after the handle has been copied, and it is
  1897. given the @var{callback_arg} pointer as argument.
  1898. @end deftypefun
  1899. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1900. This function executes the given function on a subset of workers.
  1901. When calling this method, the offloaded function specified by the first argument is
  1902. executed by every StarPU worker that may execute the function.
  1903. The second argument is passed to the offloaded function.
  1904. The last argument specifies on which types of processing units the function
  1905. should be executed. Similarly to the @var{where} field of the
  1906. @code{struct starpu_codelet} structure, it is possible to specify that the function
  1907. should be executed on every CUDA device and every CPU by passing
  1908. @code{STARPU_CPU|STARPU_CUDA}.
  1909. This function blocks until the function has been executed on every appropriate
  1910. processing units, so that it may not be called from a callback function for
  1911. instance.
  1912. @end deftypefun