advanced-api.texi 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Defining a new data interface::
  9. * Multiformat Data Interface::
  10. * Task Bundles::
  11. * Task Lists::
  12. * Using Parallel Tasks::
  13. * Scheduling Contexts::
  14. * Defining a new scheduling policy::
  15. * Expert mode::
  16. @end menu
  17. @node Defining a new data interface
  18. @section Defining a new data interface
  19. @menu
  20. * Data Interface API:: Data Interface API
  21. * An example of data interface:: An example of data interface
  22. @end menu
  23. @node Data Interface API
  24. @subsection Data Interface API
  25. @deftp {Data Type} {struct starpu_data_interface_ops}
  26. @anchor{struct starpu_data_interface_ops}
  27. Per-interface data transfer methods.
  28. @table @asis
  29. @item @code{void (*register_data_handle)(starpu_data_handle_t handle, uint32_t home_node, void *data_interface)}
  30. Register an existing interface into a data handle.
  31. @item @code{starpu_ssize_t (*allocate_data_on_node)(void *data_interface, uint32_t node)}
  32. Allocate data for the interface on a given node.
  33. @item @code{ void (*free_data_on_node)(void *data_interface, uint32_t node)}
  34. Free data of the interface on a given node.
  35. @item @code{ const struct starpu_data_copy_methods *copy_methods}
  36. ram/cuda/spu/opencl synchronous and asynchronous transfer methods.
  37. @item @code{ void * (*handle_to_pointer)(starpu_data_handle_t handle, uint32_t node)}
  38. Return the current pointer (if any) for the handle on the given node.
  39. @item @code{ size_t (*get_size)(starpu_data_handle_t handle)}
  40. Return an estimation of the size of data, for performance models.
  41. @item @code{ uint32_t (*footprint)(starpu_data_handle_t handle)}
  42. Return a 32bit footprint which characterizes the data size.
  43. @item @code{ int (*compare)(void *data_interface_a, void *data_interface_b)}
  44. Compare the data size of two interfaces.
  45. @item @code{ void (*display)(starpu_data_handle_t handle, FILE *f)}
  46. Dump the sizes of a handle to a file.
  47. @item @code{ int (*convert_to_gordon)(void *data_interface, uint64_t *ptr, gordon_strideSize_t *ss)}
  48. Convert the data size to the spu size format. If no SPUs are used, this field can be seto NULL.
  49. @item @code{enum starpu_data_interface_id interfaceid}
  50. An identifier that is unique to each interface.
  51. @item @code{size_t interface_size}
  52. The size of the interface data descriptor.
  53. @end table
  54. @end deftp
  55. @deftp {Data Type} {struct starpu_data_copy_methods}
  56. Defines the per-interface methods.
  57. @table @asis
  58. @item @code{int @{ram,cuda,opencl,spu@}_to_@{ram,cuda,opencl,spu@}(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  59. These 16 functions define how to copy data from the @var{src_interface}
  60. interface on the @var{src_node} node to the @var{dst_interface} interface
  61. on the @var{dst_node} node. They return 0 on success.
  62. @item @code{int (*ram_to_cuda_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  63. Define how to copy data from the @var{src_interface} interface on the
  64. @var{src_node} node (in RAM) to the @var{dst_interface} interface on the
  65. @var{dst_node} node (on a CUDA device), using the given @var{stream}. Return 0
  66. on success.
  67. @item @code{int (*cuda_to_ram_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  68. Define how to copy data from the @var{src_interface} interface on the
  69. @var{src_node} node (on a CUDA device) to the @var{dst_interface} interface on the
  70. @var{dst_node} node (in RAM), using the given @var{stream}. Return 0
  71. on success.
  72. @item @code{int (*cuda_to_cuda_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  73. Define how to copy data from the @var{src_interface} interface on the
  74. @var{src_node} node (on a CUDA device) to the @var{dst_interface} interface on
  75. the @var{dst_node} node (on another CUDA device), using the given @var{stream}.
  76. Return 0 on success.
  77. @item @code{int (*ram_to_opencl_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  78. Define how to copy data from the @var{src_interface} interface on the
  79. @var{src_node} node (in RAM) to the @var{dst_interface} interface on the
  80. @var{dst_node} node (on an OpenCL device), using @var{event}, a pointer to a
  81. cl_event. Return 0 on success.
  82. @item @code{int (*opencl_to_ram_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  83. Define how to copy data from the @var{src_interface} interface on the
  84. @var{src_node} node (on an OpenCL device) to the @var{dst_interface} interface
  85. on the @var{dst_node} node (in RAM), using the given @var{event}, a pointer to
  86. a cl_event. Return 0 on success.
  87. @item @code{int (*opencl_to_opencl_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  88. Define how to copy data from the @var{src_interface} interface on the
  89. @var{src_node} node (on an OpenCL device) to the @var{dst_interface} interface
  90. on the @var{dst_node} node (on another OpenCL device), using the given
  91. @var{event}, a pointer to a cl_event. Return 0 on success.
  92. @end table
  93. @end deftp
  94. @deftypefun uint32_t starpu_crc32_be_n ({void *}@var{input}, size_t @var{n}, uint32_t @var{inputcrc})
  95. Compute the CRC of a byte buffer seeded by the inputcrc "current
  96. state". The return value should be considered as the new "current
  97. state" for future CRC computation. This is used for computing data size
  98. footprint.
  99. @end deftypefun
  100. @deftypefun uint32_t starpu_crc32_be (uint32_t @var{input}, uint32_t @var{inputcrc})
  101. Compute the CRC of a 32bit number seeded by the inputcrc "current
  102. state". The return value should be considered as the new "current
  103. state" for future CRC computation. This is used for computing data size
  104. footprint.
  105. @end deftypefun
  106. @deftypefun uint32_t starpu_crc32_string ({char *}@var{str}, uint32_t @var{inputcrc})
  107. Compute the CRC of a string seeded by the inputcrc "current state".
  108. The return value should be considered as the new "current state" for
  109. future CRC computation. This is used for computing data size footprint.
  110. @end deftypefun
  111. @node An example of data interface
  112. @subsection An example of data interface
  113. @deftypefun int starpu_data_interface_get_next_id ()
  114. Returns the next available id for a newly created data interface.
  115. @end deftypefun
  116. Let's define a new data interface to manage complex numbers.
  117. @cartouche
  118. @smallexample
  119. /* interface for complex numbers */
  120. struct starpu_complex_interface
  121. @{
  122. double *real;
  123. double *imaginary;
  124. int nx;
  125. @};
  126. @end smallexample
  127. @end cartouche
  128. Registering such a data to StarPU is easily done using the function
  129. @code{starpu_data_register} (@pxref{Basic Data Library API}). The last
  130. parameter of the function, @code{interface_complex_ops}, will be
  131. described below.
  132. @cartouche
  133. @smallexample
  134. void starpu_complex_data_register(starpu_data_handle_t *handle,
  135. uint32_t home_node, double *real, double *imaginary, int nx)
  136. @{
  137. struct starpu_complex_interface complex =
  138. @{
  139. .real = real,
  140. .imaginary = imaginary,
  141. .nx = nx
  142. @};
  143. if (interface_complex_ops.interfaceid == -1)
  144. @{
  145. interface_complex_ops.interfaceid = starpu_data_interface_get_next_id();
  146. @}
  147. starpu_data_register(handleptr, home_node, &complex, &interface_complex_ops);
  148. @}
  149. @end smallexample
  150. @end cartouche
  151. Different operations need to be defined for a data interface through
  152. the type @code{struct starpu_data_interface_ops} (@pxref{Data
  153. Interface API}). We only define here the basic operations needed to
  154. run simple applications. The source code for the different functions
  155. can be found in the file
  156. @code{examples/interface/complex_interface.c}.
  157. @cartouche
  158. @smallexample
  159. static struct starpu_data_interface_ops interface_complex_ops =
  160. @{
  161. .register_data_handle = complex_register_data_handle,
  162. .allocate_data_on_node = complex_allocate_data_on_node,
  163. .copy_methods = &complex_copy_methods,
  164. .get_size = complex_get_size,
  165. .footprint = complex_footprint,
  166. .interfaceid = -1,
  167. .interface_size = sizeof(struct starpu_complex_interface),
  168. @};
  169. @end smallexample
  170. @end cartouche
  171. Functions need to be defined to access the different fields of the
  172. complex interface from a StarPU data handle.
  173. @cartouche
  174. @smallexample
  175. double *starpu_complex_get_real(starpu_data_handle_t handle)
  176. @{
  177. struct starpu_complex_interface *complex_interface =
  178. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, 0);
  179. return complex_interface->real;
  180. @}
  181. double *starpu_complex_get_imaginary(starpu_data_handle_t handle);
  182. int starpu_complex_get_nx(starpu_data_handle_t handle);
  183. @end smallexample
  184. @end cartouche
  185. Similar functions need to be defined to access the different fields of the
  186. complex interface from a @code{void *} pointer to be used within codelet
  187. implemetations.
  188. @cartouche
  189. @smallexample
  190. #define STARPU_COMPLEX_GET_REAL(interface) \
  191. (((struct starpu_complex_interface *)(interface))->real)
  192. #define STARPU_COMPLEX_GET_IMAGINARY(interface) \
  193. (((struct starpu_complex_interface *)(interface))->imaginary)
  194. #define STARPU_COMPLEX_GET_NX(interface) \
  195. (((struct starpu_complex_interface *)(interface))->nx)
  196. @end smallexample
  197. @end cartouche
  198. Complex data interfaces can then be registered to StarPU.
  199. @cartouche
  200. @smallexample
  201. double real = 45.0;
  202. double imaginary = 12.0;
  203. starpu_complex_data_register(&handle1, 0, &real, &imaginary, 1);
  204. starpu_insert_task(&cl_display, STARPU_R, handle1, 0);
  205. @end smallexample
  206. @end cartouche
  207. and used by codelets.
  208. @cartouche
  209. @smallexample
  210. void display_complex_codelet(void *descr[], __attribute__ ((unused)) void *_args)
  211. @{
  212. int nx = STARPU_COMPLEX_GET_NX(descr[0]);
  213. double *real = STARPU_COMPLEX_GET_REAL(descr[0]);
  214. double *imaginary = STARPU_COMPLEX_GET_IMAGINARY(descr[0]);
  215. int i;
  216. for(i=0 ; i<nx ; i++)
  217. @{
  218. fprintf(stderr, "Complex[%d] = %3.2f + %3.2f i\n", i, real[i], imaginary[i]);
  219. @}
  220. @}
  221. @end smallexample
  222. @end cartouche
  223. The whole code for this complex data interface is available in the
  224. directory @code{examples/interface/}.
  225. @node Multiformat Data Interface
  226. @section Multiformat Data Interface
  227. @deftp {Data Type} {struct starpu_multiformat_data_interface_ops}
  228. The different fields are:
  229. @table @asis
  230. @item @code{size_t cpu_elemsize}
  231. the size of each element on CPUs,
  232. @item @code{size_t opencl_elemsize}
  233. the size of each element on OpenCL devices,
  234. @item @code{struct starpu_codelet *cpu_to_opencl_cl}
  235. pointer to a codelet which converts from CPU to OpenCL
  236. @item @code{struct starpu_codelet *opencl_to_cpu_cl}
  237. pointer to a codelet which converts from OpenCL to CPU
  238. @item @code{size_t cuda_elemsize}
  239. the size of each element on CUDA devices,
  240. @item @code{struct starpu_codelet *cpu_to_cuda_cl}
  241. pointer to a codelet which converts from CPU to CUDA
  242. @item @code{struct starpu_codelet *cuda_to_cpu_cl}
  243. pointer to a codelet which converts from CUDA to CPU
  244. @end table
  245. @end deftp
  246. @deftypefun void starpu_multiformat_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, void *@var{ptr}, uint32_t @var{nobjects}, struct starpu_multiformat_data_interface_ops *@var{format_ops})
  247. Register a piece of data that can be represented in different ways, depending upon
  248. the processing unit that manipulates it. It allows the programmer, for instance, to
  249. use an array of structures when working on a CPU, and a structure of arrays when
  250. working on a GPU.
  251. @var{nobjects} is the number of elements in the data. @var{format_ops} describes
  252. the format.
  253. @end deftypefun
  254. @defmac STARPU_MULTIFORMAT_GET_CPU_PTR ({void *}@var{interface})
  255. returns the local pointer to the data with CPU format.
  256. @end defmac
  257. @defmac STARPU_MULTIFORMAT_GET_CUDA_PTR ({void *}@var{interface})
  258. returns the local pointer to the data with CUDA format.
  259. @end defmac
  260. @defmac STARPU_MULTIFORMAT_GET_OPENCL_PTR ({void *}@var{interface})
  261. returns the local pointer to the data with OpenCL format.
  262. @end defmac
  263. @defmac STARPU_MULTIFORMAT_GET_NX ({void *}@var{interface})
  264. returns the number of elements in the data.
  265. @end defmac
  266. @node Task Bundles
  267. @section Task Bundles
  268. @deftp {Data Type} {starpu_task_bundle_t}
  269. Opaque structure describing a list of tasks that should be scheduled
  270. on the same worker whenever it's possible. It must be considered as a
  271. hint given to the scheduler as there is no guarantee that they will be
  272. executed on the same worker.
  273. @end deftp
  274. @deftypefun void starpu_task_bundle_create ({starpu_task_bundle_t *}@var{bundle})
  275. Factory function creating and initializing @var{bundle}, when the call returns, memory needed is allocated and @var{bundle} is ready to use.
  276. @end deftypefun
  277. @deftypefun int starpu_task_bundle_insert (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  278. Insert @var{task} in @var{bundle}. Until @var{task} is removed from @var{bundle} its expected length and data transfer time will be considered along those of the other tasks of @var{bundle}.
  279. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted.
  280. @end deftypefun
  281. @deftypefun int starpu_task_bundle_remove (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  282. Remove @var{task} from @var{bundle}.
  283. Of course @var{task} must have been previously inserted @var{bundle}.
  284. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted. Doing so would result in undefined behaviour.
  285. @end deftypefun
  286. @deftypefun void starpu_task_bundle_close (starpu_task_bundle_t @var{bundle})
  287. Inform the runtime that the user won't modify @var{bundle} anymore, it means no more inserting or removing task. Thus the runtime can destroy it when possible.
  288. @end deftypefun
  289. @node Task Lists
  290. @section Task Lists
  291. @deftp {Data Type} {struct starpu_task_list}
  292. Stores a double-chained list of tasks
  293. @end deftp
  294. @deftypefun void starpu_task_list_init ({struct starpu_task_list *}@var{list})
  295. Initialize a list structure
  296. @end deftypefun
  297. @deftypefun void starpu_task_list_push_front ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  298. Push a task at the front of a list
  299. @end deftypefun
  300. @deftypefun void starpu_task_list_push_back ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  301. Push a task at the back of a list
  302. @end deftypefun
  303. @deftypefun {struct starpu_task *} starpu_task_list_front ({struct starpu_task_list *}@var{list})
  304. Get the front of the list (without removing it)
  305. @end deftypefun
  306. @deftypefun {struct starpu_task *} starpu_task_list_back ({struct starpu_task_list *}@var{list})
  307. Get the back of the list (without removing it)
  308. @end deftypefun
  309. @deftypefun int starpu_task_list_empty ({struct starpu_task_list *}@var{list})
  310. Test if a list is empty
  311. @end deftypefun
  312. @deftypefun void starpu_task_list_erase ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  313. Remove an element from the list
  314. @end deftypefun
  315. @deftypefun {struct starpu_task *} starpu_task_list_pop_front ({struct starpu_task_list *}@var{list})
  316. Remove the element at the front of the list
  317. @end deftypefun
  318. @deftypefun {struct starpu_task *} starpu_task_list_pop_back ({struct starpu_task_list *}@var{list})
  319. Remove the element at the back of the list
  320. @end deftypefun
  321. @deftypefun {struct starpu_task *} starpu_task_list_begin ({struct starpu_task_list *}@var{list})
  322. Get the first task of the list.
  323. @end deftypefun
  324. @deftypefun {struct starpu_task *} starpu_task_list_end ({struct starpu_task_list *}@var{list})
  325. Get the end of the list.
  326. @end deftypefun
  327. @deftypefun {struct starpu_task *} starpu_task_list_next ({struct starpu_task *}@var{task})
  328. Get the next task of the list. This is not erase-safe.
  329. @end deftypefun
  330. @node Using Parallel Tasks
  331. @section Using Parallel Tasks
  332. Workers are grouped considering the topology of the machine in order to permit the opaque execution of parallel tasks.
  333. @deftp {Data Type} {struct starpu_machine_topology}
  334. @table @asis
  335. @item @code{unsigned nworkers}
  336. Total number of workers.
  337. @item @code{unsigned ncombinedworkers}
  338. Total number of combined workers.
  339. @item @code{hwloc_topology_t hwtopology}
  340. Topology as detected by hwloc.
  341. To maintain ABI compatibility when hwloc is not available, the field
  342. is replaced with @code{void *dummy}
  343. @item @code{unsigned nhwcpus}
  344. Total number of CPUs, as detected by the topology code. May be different from
  345. the actual number of CPU workers.
  346. @item @code{unsigned nhwcudagpus}
  347. Total number of CUDA devices, as detected. May be different from the actual
  348. number of CUDA workers.
  349. @item @code{unsigned nhwopenclgpus}
  350. Total number of OpenCL devices, as detected. May be different from the actual
  351. number of CUDA workers.
  352. @item @code{unsigned ncpus}
  353. Actual number of CPU workers used by StarPU.
  354. @item @code{unsigned ncudagpus}
  355. Actual number of CUDA workers used by StarPU.
  356. @item @code{unsigned nopenclgpus}
  357. Actual number of OpenCL workers used by StarPU.
  358. @item @code{unsigned ngordon_spus}
  359. Actual number of Gordon workers used by StarPU.
  360. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  361. Indicates the successive cpu identifier that should be used to bind the
  362. workers. It is either filled according to the user's explicit
  363. parameters (from starpu_conf) or according to the STARPU_WORKERS_CPUID env.
  364. variable. Otherwise, a round-robin policy is used to distributed the workers
  365. over the cpus.
  366. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  367. Indicates the successive cpu identifier that should be used by the CUDA
  368. driver. It is either filled according to the user's explicit parameters (from
  369. starpu_conf) or according to the STARPU_WORKERS_CUDAID env. variable. Otherwise,
  370. they are taken in ID order.
  371. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  372. Indicates the successive cpu identifier that should be used by the OpenCL
  373. driver. It is either filled according to the user's explicit parameters (from
  374. starpu_conf) or according to the STARPU_WORKERS_OPENCLID env. variable. Otherwise,
  375. they are taken in ID order.
  376. @end table
  377. @end deftp
  378. @deftypefun int starpu_combined_worker_get_size (void)
  379. Return the size of the current combined worker, i.e. the total number of cpus
  380. running the same task in the case of SPMD parallel tasks, or the total number
  381. of threads that the task is allowed to start in the case of FORKJOIN parallel
  382. tasks.
  383. @end deftypefun
  384. @deftypefun int starpu_combined_worker_get_rank (void)
  385. Return the rank of the current thread within the combined worker. Can only be
  386. used in FORKJOIN parallel tasks, to know which part of the task to work on.
  387. @end deftypefun
  388. Most of these are used for schedulers which support parallel tasks.
  389. @deftypefun unsigned starpu_combined_worker_get_count (void)
  390. Return the number of different combined workers.
  391. @end deftypefun
  392. @deftypefun int starpu_combined_worker_get_id (void)
  393. Return the identifier of the current combined worker.
  394. @end deftypefun
  395. @deftypefun int starpu_combined_worker_assign_workerid (int @var{nworkers}, int @var{workerid_array}[])
  396. Register a new combined worker and get its identifier
  397. @end deftypefun
  398. @deftypefun int starpu_combined_worker_get_description (int @var{workerid}, {int *}@var{worker_size}, {int **}@var{combined_workerid})
  399. Get the description of a combined worker
  400. @end deftypefun
  401. @deftypefun int starpu_combined_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned @var{nimpl})
  402. Variant of starpu_worker_can_execute_task compatible with combined workers
  403. @end deftypefun
  404. @node Scheduling Contexts
  405. @section Scheduling Contexts
  406. StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the other hand grouping tasks in bundles that will be executed by a single specified worker.
  407. In contrast when we group workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to the context.
  408. Scheduling contexts can be created, deleted and modified dynamically.
  409. @deftypefun unsigned starpu_create_sched_ctx (const char *@var{policy_name}, int *@var{workerids_ctx}, int @var{nworkers_ctx}, const char *@var{sched_ctx_name})
  410. This function creates a scheduling context which uses the scheduling policy indicated in the first argument and assigns the workers indicated in the second argument to execute the tasks submitted to it.
  411. The return value represents the identifier of the context that has just been created. It will be further used to indicate the context the tasks will be submitted to. The return value should be at most @code{STARPU_NMAX_SCHED_CTXS}.
  412. @end deftypefun
  413. @deftypefun void starpu_delete_sched_ctx (unsigned @var{sched_ctx_id}, unsigned @var{inheritor_sched_ctx_id})
  414. Delete scheduling context @var{sched_ctx_id} and lets scheduling context @var{inheritor_sched_ctx_id} take over its workers.
  415. @end deftypefun
  416. @deftypefun void starpu_add_workers_to_sched_ctx ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx})
  417. This function adds dynamically the workers indicated in the first argument to the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  418. @end deftypefun
  419. @deftypefun void starpu_remove_workers_from_sched_ctx ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx})
  420. This function removes the workers indicated in the first argument from the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  421. @end deftypefun
  422. A scheduling context manages a collection of workers that can be memorized using different data structures. Thus, a generic structure is available in order to simplify the choice of its type.
  423. Only the list data structure is available but further data structures(like tree) implementations are foreseen.
  424. @deftp {Data Type} {struct worker_collection}
  425. @table @asis
  426. @item @code{void *workerids}
  427. The workerids managed by the collection
  428. @item @code{unsigned nworkers}
  429. The number of workerids
  430. @item @code{pthread_key_t cursor_key} (optional)
  431. The cursor needed to iterate the collection (depending on the data structure)
  432. @item @code{int type}
  433. The type of structure (currently WORKER_LIST is the only one available)
  434. @item @code{unsigned (*has_next)(struct worker_collection *workers)}
  435. Checks if there is a next worker
  436. @item @code{int (*get_next)(struct worker_collection *workers)}
  437. Gets the next worker
  438. @item @code{int (*add)(struct worker_collection *workers, int worker)}
  439. Adds a worker to the collection
  440. @item @code{int (*remove)(struct worker_collection *workers, int worker)}
  441. Removes a worker from the collection
  442. @item @code{void* (*init)(struct worker_collection *workers)}
  443. Initialize the collection
  444. @item @code{void (*deinit)(struct worker_collection *workers)}
  445. Deinitialize the colection
  446. @item @code{void (*init_cursor)(struct worker_collection *workers)} (optional)
  447. Initialize the cursor if there is one
  448. @item @code{void (*deinit_cursor)(struct worker_collection *workers)} (optional)
  449. Deinitialize the cursor if there is one
  450. @end table
  451. @end deftp
  452. @deftypefun struct worker_collection* starpu_create_worker_collection_for_sched_ctx (unsigned @var{sched_ctx_id}, int @var{type})
  453. Creates a worker collection of the type indicated by the last parameter for the context specified through the first parameter.
  454. @end deftypefun
  455. @deftypefun void starpu_delete_worker_collection_for_sched_ctx (unsigned @var{sched_ctx_id})
  456. Deletes the worker collection of the specified scheduling context
  457. @end deftypefun
  458. @deftypefun struct worker_collection* starpu_get_worker_collection_of_sched_ctx (unsigned @var{sched_ctx_id})
  459. Returns the worker collection managed by the indicated context
  460. @end deftypefun
  461. @deftypefun pthread_mutex_t* starpu_get_changing_ctx_mutex (unsigned @var{sched_ctx_id})
  462. @end deftypefun
  463. @deftypefun void starpu_set_sched_ctx (unsigned *@var{sched_ctx})
  464. Sets the scheduling context the task will be submitted to
  465. @end deftypefun
  466. @deftypefun unsigned starpu_get_sched_ctx (void)
  467. Returns the scheduling contexts the tasks are currently submitted to
  468. @end deftypefun
  469. @deftypefun unsigned starpu_get_nworkers_of_sched_ctx (unsigned @var{sched_ctx})
  470. Returns the number of workers managed by the specified contexts
  471. (Usually needed to verify if it manages any workers or if it should be blocked)
  472. @end deftypefun
  473. @deftypefun unsigned starpu_get_nshared_workers (unsigned @var{sched_ctx_id}, unsigned @var{sched_ctx_id2})
  474. Returns the number of workers shared by two contexts
  475. @end deftypefun
  476. @node Defining a new scheduling policy
  477. @section Defining a new scheduling policy
  478. TODO
  479. A full example showing how to define a new scheduling policy is available in
  480. the StarPU sources in the directory @code{examples/scheduler/}.
  481. @menu
  482. * Scheduling Policy API:: Scheduling Policy API
  483. * Source code::
  484. @end menu
  485. @node Scheduling Policy API
  486. @subsection Scheduling Policy API
  487. While StarPU comes with a variety of scheduling policies (@pxref{Task
  488. scheduling policy}), it may sometimes be desirable to implement custom
  489. policies to address specific problems. The API described below allows
  490. users to write their own scheduling policy.
  491. @deftp {Data Type} {struct starpu_sched_policy}
  492. This structure contains all the methods that implement a scheduling policy. An
  493. application may specify which scheduling strategy in the @code{sched_policy}
  494. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  495. function. The different fields are:
  496. @table @asis
  497. @item @code{void (*init_sched)(unsigned sched_ctx_id)}
  498. Initialize the scheduling policy.
  499. @item @code{void (*deinit_sched)(unsigned sched_ctx_id)}
  500. Cleanup the scheduling policy.
  501. @item @code{int (*push_task)(struct starpu_task *)}
  502. Insert a task into the scheduler.
  503. @item @code{void (*push_task_notify)(struct starpu_task *, int workerid)}
  504. Notify the scheduler that a task was pushed on a given worker. This method is
  505. called when a task that was explicitely assigned to a worker becomes ready and
  506. is about to be executed by the worker. This method therefore permits to keep
  507. the state of of the scheduler coherent even when StarPU bypasses the scheduling
  508. strategy.
  509. @item @code{struct starpu_task *(*pop_task)(unsigned sched_ctx_id)} (optional)
  510. Get a task from the scheduler. The mutex associated to the worker is already
  511. taken when this method is called. If this method is defined as @code{NULL}, the
  512. worker will only execute tasks from its local queue. In this case, the
  513. @code{push_task} method should use the @code{starpu_push_local_task} method to
  514. assign tasks to the different workers.
  515. @item @code{struct starpu_task *(*pop_every_task)(unsigned sched_ctx_id)}
  516. Remove all available tasks from the scheduler (tasks are chained by the means
  517. of the prev and next fields of the starpu_task structure). The mutex associated
  518. to the worker is already taken when this method is called. This is currently
  519. only used by the Gordon driver.
  520. @item @code{void (*pre_exec_hook)(struct starpu_task *)} (optional)
  521. This method is called every time a task is starting.
  522. @item @code{void (*post_exec_hook)(struct starpu_task *)} (optional)
  523. This method is called every time a task has been executed.
  524. @item @code{void (*add_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  525. Initialize scheduling structures corresponding to each worker used by the policy.
  526. @item @code{void (*remove_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  527. Deinitialize scheduling structures corresponding to each worker used by the policy.
  528. @item @code{const char *policy_name} (optional)
  529. Name of the policy.
  530. @item @code{const char *policy_description} (optional)
  531. Description of the policy.
  532. @end table
  533. @end deftp
  534. @deftypefun void starpu_worker_set_sched_condition (unsigned @var{sched_ctx_id}, int @var{workerid}, {pthread_cond_t *}@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  535. This function specifies the condition variable associated to a worker per context
  536. When there is no available task for a worker, StarPU blocks this worker on a
  537. condition variable. This function specifies which condition variable (and the
  538. associated mutex) should be used to block (and to wake up) a worker. Note that
  539. multiple workers may use the same condition variable. For instance, in the case
  540. of a scheduling strategy with a single task queue, the same condition variable
  541. would be used to block and wake up all workers.
  542. The initialization method of a scheduling strategy (@code{init_sched}) must
  543. call this function once per worker.
  544. @end deftypefun
  545. @deftypefun void starpu_worker_get_sched_condition (unsigned @var{sched_ctx_id}, int @var{workerid}, {pthread_cond_t **}@var{sched_cond}, {pthread_mutex_t **}@var{sched_mutex})
  546. This function returns the condition variables associated to a worker in a context
  547. It is used in the policy to access to the local queue of the worker
  548. @end deftypefun
  549. @deftypefun void starpu_set_sched_ctx_policy_data (unsigned @var{sched_ctx}, {void*} @var{policy_data})
  550. Each scheduling policy uses some specific data (queues, variables, additional condition variables).
  551. It is memorize through a local structure. This function assigns it to a scheduling context.
  552. @end deftypefun
  553. @deftypefun void* starpu_get_sched_ctx_policy_data (unsigned @var{sched_ctx})
  554. Returns the policy data previously assigned to a context
  555. @end deftypefun
  556. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  557. Defines the minimum priority level supported by the scheduling policy. The
  558. default minimum priority level is the same as the default priority level which
  559. is 0 by convention. The application may access that value by calling the
  560. @code{starpu_sched_get_min_priority} function. This function should only be
  561. called from the initialization method of the scheduling policy, and should not
  562. be used directly from the application.
  563. @end deftypefun
  564. @deftypefun void starpu_sched_set_max_priority (int @var{max_prio})
  565. Defines the maximum priority level supported by the scheduling policy. The
  566. default maximum priority level is 1. The application may access that value by
  567. calling the @code{starpu_sched_get_max_priority} function. This function should
  568. only be called from the initialization method of the scheduling policy, and
  569. should not be used directly from the application.
  570. @end deftypefun
  571. @deftypefun int starpu_sched_get_min_priority (void)
  572. Returns the current minimum priority level supported by the
  573. scheduling policy
  574. @end deftypefun
  575. @deftypefun int starpu_sched_get_max_priority (void)
  576. Returns the current maximum priority level supported by the
  577. scheduling policy
  578. @end deftypefun
  579. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  580. The scheduling policy may put tasks directly into a worker's local queue so
  581. that it is not always necessary to create its own queue when the local queue
  582. is sufficient. If @var{back} not null, @var{task} is put at the back of the queue
  583. where the worker will pop tasks first. Setting @var{back} to 0 therefore ensures
  584. a FIFO ordering.
  585. @end deftypefun
  586. @deftypefun int starpu_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned {nimpl})
  587. Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute.
  588. @end deftypefun
  589. @deftypefun double starpu_timing_now (void)
  590. Return the current date in µs
  591. @end deftypefun
  592. @deftypefun double starpu_task_expected_length ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  593. Returns expected task duration in µs
  594. @end deftypefun
  595. @deftypefun double starpu_worker_get_relative_speedup ({enum starpu_perf_archtype} @var{perf_archtype})
  596. Returns an estimated speedup factor relative to CPU speed
  597. @end deftypefun
  598. @deftypefun double starpu_task_expected_data_transfer_time (uint32_t @var{memory_node}, {struct starpu_task *}@var{task})
  599. Returns expected data transfer time in µs
  600. @end deftypefun
  601. @deftypefun double starpu_data_expected_transfer_time (starpu_data_handle_t @var{handle}, unsigned @var{memory_node}, {enum starpu_access_mode} @var{mode})
  602. Predict the transfer time (in µs) to move a handle to a memory node
  603. @end deftypefun
  604. @deftypefun double starpu_task_expected_power ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  605. Returns expected power consumption in J
  606. @end deftypefun
  607. @deftypefun double starpu_task_expected_conversion_time ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned {nimpl})
  608. Returns expected conversion time in ms (multiformat interface only)
  609. @end deftypefun
  610. @node Source code
  611. @subsection Source code
  612. @cartouche
  613. @smallexample
  614. static struct starpu_sched_policy dummy_sched_policy = @{
  615. .init_sched = init_dummy_sched,
  616. .deinit_sched = deinit_dummy_sched,
  617. .add_workers = dummy_sched_add_workers,
  618. .remove_workers = dummy_sched_remove_workers,
  619. .push_task = push_task_dummy,
  620. .push_prio_task = NULL,
  621. .pop_task = pop_task_dummy,
  622. .post_exec_hook = NULL,
  623. .pop_every_task = NULL,
  624. .policy_name = "dummy",
  625. .policy_description = "dummy scheduling strategy"
  626. @};
  627. @end smallexample
  628. @end cartouche
  629. @node Expert mode
  630. @section Expert mode
  631. @deftypefun void starpu_wake_all_blocked_workers (void)
  632. Wake all the workers, so they can inspect data requests and task submissions
  633. again.
  634. @end deftypefun
  635. @deftypefun int starpu_progression_hook_register (unsigned (*@var{func})(void *arg), void *@var{arg})
  636. Register a progression hook, to be called when workers are idle.
  637. @end deftypefun
  638. @deftypefun void starpu_progression_hook_deregister (int @var{hook_id})
  639. Unregister a given progression hook.
  640. @end deftypefun