123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623 |
- /* _starpu_dla_gerfsx_extended.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b6 = -1.;
- static doublereal c_b8 = 1.;
- /* Subroutine */ int _starpu_dla_gerfsx_extended__(integer *prec_type__, integer *
- trans_type__, integer *n, integer *nrhs, doublereal *a, integer *lda,
- doublereal *af, integer *ldaf, integer *ipiv, logical *colequ,
- doublereal *c__, doublereal *b, integer *ldb, doublereal *y, integer *
- ldy, doublereal *berr_out__, integer *n_norms__, doublereal *errs_n__,
- doublereal *errs_c__, doublereal *res, doublereal *ayb, doublereal *
- dy, doublereal *y_tail__, doublereal *rcond, integer *ithresh,
- doublereal *rthresh, doublereal *dz_ub__, logical *ignore_cwise__,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1,
- y_offset, errs_n_dim1, errs_n_offset, errs_c_dim1, errs_c_offset,
- i__1, i__2, i__3;
- doublereal d__1, d__2;
- char ch__1[1];
- /* Local variables */
- doublereal dxratmax, dzratmax;
- integer i__, j;
- extern /* Subroutine */ int _starpu_dla_geamv__(integer *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- logical incr_prec__;
- doublereal prev_dz_z__, yk, final_dx_x__;
- extern /* Subroutine */ int _starpu_dla_wwaddw__(integer *, doublereal *,
- doublereal *, doublereal *);
- doublereal final_dz_z__, prevnormdx;
- integer cnt;
- doublereal dyk, eps, incr_thresh__, dx_x__, dz_z__;
- extern /* Subroutine */ int _starpu_dla_lin_berr__(integer *, integer *, integer *
- , doublereal *, doublereal *, doublereal *);
- doublereal ymin;
- extern /* Subroutine */ int _starpu_blas_dgemv_x__(integer *, integer *, integer *
- , doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, integer *);
- integer y_prec_state__;
- extern /* Subroutine */ int blas_dgemv2_x__(integer *, integer *, integer
- *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *), _starpu_dgemv_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), _starpu_dcopy_(integer *, doublereal *,
- integer *, doublereal *, integer *);
- doublereal dxrat, dzrat;
- extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- char trans[1];
- doublereal normx, normy;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dgetrs_(char *, integer *, integer *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- doublereal normdx;
- extern /* Character */ VOID _starpu_chla_transtype__(char *, ftnlen, integer *);
- doublereal hugeval;
- integer x_state__, z_state__;
- /* -- LAPACK routine (version 3.2.1) -- */
- /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
- /* -- Jason Riedy of Univ. of California Berkeley. -- */
- /* -- April 2009 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley and NAG Ltd. -- */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLA_GERFSX_EXTENDED improves the computed solution to a system of */
- /* linear equations by performing extra-precise iterative refinement */
- /* and provides error bounds and backward error estimates for the solution. */
- /* This subroutine is called by DGERFSX to perform iterative refinement. */
- /* In addition to normwise error bound, the code provides maximum */
- /* componentwise error bound if possible. See comments for ERR_BNDS_NORM */
- /* and ERR_BNDS_COMP for details of the error bounds. Note that this */
- /* subroutine is only resonsible for setting the second fields of */
- /* ERR_BNDS_NORM and ERR_BNDS_COMP. */
- /* Arguments */
- /* ========= */
- /* PREC_TYPE (input) INTEGER */
- /* Specifies the intermediate precision to be used in refinement. */
- /* The value is defined by ILAPREC(P) where P is a CHARACTER and */
- /* P = 'S': Single */
- /* = 'D': Double */
- /* = 'I': Indigenous */
- /* = 'X', 'E': Extra */
- /* TRANS_TYPE (input) INTEGER */
- /* Specifies the transposition operation on A. */
- /* The value is defined by ILATRANS(T) where T is a CHARACTER and */
- /* T = 'N': No transpose */
- /* = 'T': Transpose */
- /* = 'C': Conjugate transpose */
- /* N (input) INTEGER */
- /* The number of linear equations, i.e., the order of the */
- /* matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right-hand-sides, i.e., the number of columns of the */
- /* matrix B. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the N-by-N matrix A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */
- /* The factors L and U from the factorization */
- /* A = P*L*U as computed by DGETRF. */
- /* LDAF (input) INTEGER */
- /* The leading dimension of the array AF. LDAF >= max(1,N). */
- /* IPIV (input) INTEGER array, dimension (N) */
- /* The pivot indices from the factorization A = P*L*U */
- /* as computed by DGETRF; row i of the matrix was interchanged */
- /* with row IPIV(i). */
- /* COLEQU (input) LOGICAL */
- /* If .TRUE. then column equilibration was done to A before calling */
- /* this routine. This is needed to compute the solution and error */
- /* bounds correctly. */
- /* C (input) DOUBLE PRECISION array, dimension (N) */
- /* The column scale factors for A. If COLEQU = .FALSE., C */
- /* is not accessed. If C is input, each element of C should be a power */
- /* of the radix to ensure a reliable solution and error estimates. */
- /* Scaling by powers of the radix does not cause rounding errors unless */
- /* the result underflows or overflows. Rounding errors during scaling */
- /* lead to refining with a matrix that is not equivalent to the */
- /* input matrix, producing error estimates that may not be */
- /* reliable. */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* The right-hand-side matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* Y (input/output) DOUBLE PRECISION array, dimension */
- /* (LDY,NRHS) */
- /* On entry, the solution matrix X, as computed by DGETRS. */
- /* On exit, the improved solution matrix Y. */
- /* LDY (input) INTEGER */
- /* The leading dimension of the array Y. LDY >= max(1,N). */
- /* BERR_OUT (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* On exit, BERR_OUT(j) contains the componentwise relative backward */
- /* error for right-hand-side j from the formula */
- /* max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
- /* where abs(Z) is the componentwise absolute value of the matrix */
- /* or vector Z. This is computed by DLA_LIN_BERR. */
- /* N_NORMS (input) INTEGER */
- /* Determines which error bounds to return (see ERR_BNDS_NORM */
- /* and ERR_BNDS_COMP). */
- /* If N_NORMS >= 1 return normwise error bounds. */
- /* If N_NORMS >= 2 return componentwise error bounds. */
- /* ERR_BNDS_NORM (input/output) DOUBLE PRECISION array, dimension */
- /* (NRHS, N_ERR_BNDS) */
- /* For each right-hand side, this array contains information about */
- /* various error bounds and condition numbers corresponding to the */
- /* normwise relative error, which is defined as follows: */
- /* Normwise relative error in the ith solution vector: */
- /* max_j (abs(XTRUE(j,i) - X(j,i))) */
- /* ------------------------------ */
- /* max_j abs(X(j,i)) */
- /* The array is indexed by the type of error information as described */
- /* below. There currently are up to three pieces of information */
- /* returned. */
- /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
- /* right-hand side. */
- /* The second index in ERR_BNDS_NORM(:,err) contains the following */
- /* three fields: */
- /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
- /* reciprocal condition number is less than the threshold */
- /* sqrt(n) * slamch('Epsilon'). */
- /* err = 2 "Guaranteed" error bound: The estimated forward error, */
- /* almost certainly within a factor of 10 of the true error */
- /* so long as the next entry is greater than the threshold */
- /* sqrt(n) * slamch('Epsilon'). This error bound should only */
- /* be trusted if the previous boolean is true. */
- /* err = 3 Reciprocal condition number: Estimated normwise */
- /* reciprocal condition number. Compared with the threshold */
- /* sqrt(n) * slamch('Epsilon') to determine if the error */
- /* estimate is "guaranteed". These reciprocal condition */
- /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
- /* appropriately scaled matrix Z. */
- /* Let Z = S*A, where S scales each row by a power of the */
- /* radix so all absolute row sums of Z are approximately 1. */
- /* This subroutine is only responsible for setting the second field */
- /* above. */
- /* See Lapack Working Note 165 for further details and extra */
- /* cautions. */
- /* ERR_BNDS_COMP (input/output) DOUBLE PRECISION array, dimension */
- /* (NRHS, N_ERR_BNDS) */
- /* For each right-hand side, this array contains information about */
- /* various error bounds and condition numbers corresponding to the */
- /* componentwise relative error, which is defined as follows: */
- /* Componentwise relative error in the ith solution vector: */
- /* abs(XTRUE(j,i) - X(j,i)) */
- /* max_j ---------------------- */
- /* abs(X(j,i)) */
- /* The array is indexed by the right-hand side i (on which the */
- /* componentwise relative error depends), and the type of error */
- /* information as described below. There currently are up to three */
- /* pieces of information returned for each right-hand side. If */
- /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
- /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */
- /* the first (:,N_ERR_BNDS) entries are returned. */
- /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
- /* right-hand side. */
- /* The second index in ERR_BNDS_COMP(:,err) contains the following */
- /* three fields: */
- /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
- /* reciprocal condition number is less than the threshold */
- /* sqrt(n) * slamch('Epsilon'). */
- /* err = 2 "Guaranteed" error bound: The estimated forward error, */
- /* almost certainly within a factor of 10 of the true error */
- /* so long as the next entry is greater than the threshold */
- /* sqrt(n) * slamch('Epsilon'). This error bound should only */
- /* be trusted if the previous boolean is true. */
- /* err = 3 Reciprocal condition number: Estimated componentwise */
- /* reciprocal condition number. Compared with the threshold */
- /* sqrt(n) * slamch('Epsilon') to determine if the error */
- /* estimate is "guaranteed". These reciprocal condition */
- /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
- /* appropriately scaled matrix Z. */
- /* Let Z = S*(A*diag(x)), where x is the solution for the */
- /* current right-hand side and S scales each row of */
- /* A*diag(x) by a power of the radix so all absolute row */
- /* sums of Z are approximately 1. */
- /* This subroutine is only responsible for setting the second field */
- /* above. */
- /* See Lapack Working Note 165 for further details and extra */
- /* cautions. */
- /* RES (input) DOUBLE PRECISION array, dimension (N) */
- /* Workspace to hold the intermediate residual. */
- /* AYB (input) DOUBLE PRECISION array, dimension (N) */
- /* Workspace. This can be the same workspace passed for Y_TAIL. */
- /* DY (input) DOUBLE PRECISION array, dimension (N) */
- /* Workspace to hold the intermediate solution. */
- /* Y_TAIL (input) DOUBLE PRECISION array, dimension (N) */
- /* Workspace to hold the trailing bits of the intermediate solution. */
- /* RCOND (input) DOUBLE PRECISION */
- /* Reciprocal scaled condition number. This is an estimate of the */
- /* reciprocal Skeel condition number of the matrix A after */
- /* equilibration (if done). If this is less than the machine */
- /* precision (in particular, if it is zero), the matrix is singular */
- /* to working precision. Note that the error may still be small even */
- /* if this number is very small and the matrix appears ill- */
- /* conditioned. */
- /* ITHRESH (input) INTEGER */
- /* The maximum number of residual computations allowed for */
- /* refinement. The default is 10. For 'aggressive' set to 100 to */
- /* permit convergence using approximate factorizations or */
- /* factorizations other than LU. If the factorization uses a */
- /* technique other than Gaussian elimination, the guarantees in */
- /* ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */
- /* RTHRESH (input) DOUBLE PRECISION */
- /* Determines when to stop refinement if the error estimate stops */
- /* decreasing. Refinement will stop when the next solution no longer */
- /* satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
- /* the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
- /* default value is 0.5. For 'aggressive' set to 0.9 to permit */
- /* convergence on extremely ill-conditioned matrices. See LAWN 165 */
- /* for more details. */
- /* DZ_UB (input) DOUBLE PRECISION */
- /* Determines when to start considering componentwise convergence. */
- /* Componentwise convergence is only considered after each component */
- /* of the solution Y is stable, which we definte as the relative */
- /* change in each component being less than DZ_UB. The default value */
- /* is 0.25, requiring the first bit to be stable. See LAWN 165 for */
- /* more details. */
- /* IGNORE_CWISE (input) LOGICAL */
- /* If .TRUE. then ignore componentwise convergence. Default value */
- /* is .FALSE.. */
- /* INFO (output) INTEGER */
- /* = 0: Successful exit. */
- /* < 0: if INFO = -i, the ith argument to DGETRS had an illegal */
- /* value */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Parameters .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- errs_c_dim1 = *nrhs;
- errs_c_offset = 1 + errs_c_dim1;
- errs_c__ -= errs_c_offset;
- errs_n_dim1 = *nrhs;
- errs_n_offset = 1 + errs_n_dim1;
- errs_n__ -= errs_n_offset;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- af_dim1 = *ldaf;
- af_offset = 1 + af_dim1;
- af -= af_offset;
- --ipiv;
- --c__;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1;
- y -= y_offset;
- --berr_out__;
- --res;
- --ayb;
- --dy;
- --y_tail__;
- /* Function Body */
- if (*info != 0) {
- return 0;
- }
- _starpu_chla_transtype__(ch__1, (ftnlen)1, trans_type__);
- *(unsigned char *)trans = *(unsigned char *)&ch__1[0];
- eps = _starpu_dlamch_("Epsilon");
- hugeval = _starpu_dlamch_("Overflow");
- /* Force HUGEVAL to Inf */
- hugeval *= hugeval;
- /* Using HUGEVAL may lead to spurious underflows. */
- incr_thresh__ = (doublereal) (*n) * eps;
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- y_prec_state__ = 1;
- if (y_prec_state__ == 2) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- y_tail__[i__] = 0.;
- }
- }
- dxrat = 0.;
- dxratmax = 0.;
- dzrat = 0.;
- dzratmax = 0.;
- final_dx_x__ = hugeval;
- final_dz_z__ = hugeval;
- prevnormdx = hugeval;
- prev_dz_z__ = hugeval;
- dz_z__ = hugeval;
- dx_x__ = hugeval;
- x_state__ = 1;
- z_state__ = 0;
- incr_prec__ = FALSE_;
- i__2 = *ithresh;
- for (cnt = 1; cnt <= i__2; ++cnt) {
- /* Compute residual RES = B_s - op(A_s) * Y, */
- /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
- _starpu_dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
- if (y_prec_state__ == 0) {
- _starpu_dgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 +
- 1], &c__1, &c_b8, &res[1], &c__1);
- } else if (y_prec_state__ == 1) {
- _starpu_blas_dgemv_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda, &
- y[j * y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1,
- prec_type__);
- } else {
- blas_dgemv2_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda,
- &y[j * y_dim1 + 1], &y_tail__[1], &c__1, &c_b8, &res[
- 1], &c__1, prec_type__);
- }
- /* XXX: RES is no longer needed. */
- _starpu_dcopy_(n, &res[1], &c__1, &dy[1], &c__1);
- _starpu_dgetrs_(trans, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &dy[1],
- n, info);
- /* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
- normx = 0.;
- normy = 0.;
- normdx = 0.;
- dz_z__ = 0.;
- ymin = hugeval;
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- yk = (d__1 = y[i__ + j * y_dim1], abs(d__1));
- dyk = (d__1 = dy[i__], abs(d__1));
- if (yk != 0.) {
- /* Computing MAX */
- d__1 = dz_z__, d__2 = dyk / yk;
- dz_z__ = max(d__1,d__2);
- } else if (dyk != 0.) {
- dz_z__ = hugeval;
- }
- ymin = min(ymin,yk);
- normy = max(normy,yk);
- if (*colequ) {
- /* Computing MAX */
- d__1 = normx, d__2 = yk * c__[i__];
- normx = max(d__1,d__2);
- /* Computing MAX */
- d__1 = normdx, d__2 = dyk * c__[i__];
- normdx = max(d__1,d__2);
- } else {
- normx = normy;
- normdx = max(normdx,dyk);
- }
- }
- if (normx != 0.) {
- dx_x__ = normdx / normx;
- } else if (normdx == 0.) {
- dx_x__ = 0.;
- } else {
- dx_x__ = hugeval;
- }
- dxrat = normdx / prevnormdx;
- dzrat = dz_z__ / prev_dz_z__;
- /* Check termination criteria */
- if (! (*ignore_cwise__) && ymin * *rcond < incr_thresh__ * normy
- && y_prec_state__ < 2) {
- incr_prec__ = TRUE_;
- }
- if (x_state__ == 3 && dxrat <= *rthresh) {
- x_state__ = 1;
- }
- if (x_state__ == 1) {
- if (dx_x__ <= eps) {
- x_state__ = 2;
- } else if (dxrat > *rthresh) {
- if (y_prec_state__ != 2) {
- incr_prec__ = TRUE_;
- } else {
- x_state__ = 3;
- }
- } else {
- if (dxrat > dxratmax) {
- dxratmax = dxrat;
- }
- }
- if (x_state__ > 1) {
- final_dx_x__ = dx_x__;
- }
- }
- if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
- z_state__ = 1;
- }
- if (z_state__ == 3 && dzrat <= *rthresh) {
- z_state__ = 1;
- }
- if (z_state__ == 1) {
- if (dz_z__ <= eps) {
- z_state__ = 2;
- } else if (dz_z__ > *dz_ub__) {
- z_state__ = 0;
- dzratmax = 0.;
- final_dz_z__ = hugeval;
- } else if (dzrat > *rthresh) {
- if (y_prec_state__ != 2) {
- incr_prec__ = TRUE_;
- } else {
- z_state__ = 3;
- }
- } else {
- if (dzrat > dzratmax) {
- dzratmax = dzrat;
- }
- }
- if (z_state__ > 1) {
- final_dz_z__ = dz_z__;
- }
- }
- /* Exit if both normwise and componentwise stopped working, */
- /* but if componentwise is unstable, let it go at least two */
- /* iterations. */
- if (x_state__ != 1) {
- if (*ignore_cwise__) {
- goto L666;
- }
- if (z_state__ == 3 || z_state__ == 2) {
- goto L666;
- }
- if (z_state__ == 0 && cnt > 1) {
- goto L666;
- }
- }
- if (incr_prec__) {
- incr_prec__ = FALSE_;
- ++y_prec_state__;
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- y_tail__[i__] = 0.;
- }
- }
- prevnormdx = normdx;
- prev_dz_z__ = dz_z__;
- /* Update soluton. */
- if (y_prec_state__ < 2) {
- _starpu_daxpy_(n, &c_b8, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
- } else {
- _starpu_dla_wwaddw__(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
- }
- }
- /* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT. */
- L666:
- /* Set final_* when cnt hits ithresh. */
- if (x_state__ == 1) {
- final_dx_x__ = dx_x__;
- }
- if (z_state__ == 1) {
- final_dz_z__ = dz_z__;
- }
- /* Compute error bounds */
- if (*n_norms__ >= 1) {
- errs_n__[j + (errs_n_dim1 << 1)] = final_dx_x__ / (1 - dxratmax);
- }
- if (*n_norms__ >= 2) {
- errs_c__[j + (errs_c_dim1 << 1)] = final_dz_z__ / (1 - dzratmax);
- }
- /* Compute componentwise relative backward error from formula */
- /* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
- /* where abs(Z) is the componentwise absolute value of the matrix */
- /* or vector Z. */
- /* Compute residual RES = B_s - op(A_s) * Y, */
- /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
- _starpu_dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
- _starpu_dgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 + 1], &
- c__1, &c_b8, &res[1], &c__1);
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- ayb[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
- }
- /* Compute abs(op(A_s))*abs(Y) + abs(B_s). */
- _starpu_dla_geamv__(trans_type__, n, n, &c_b8, &a[a_offset], lda, &y[j *
- y_dim1 + 1], &c__1, &c_b8, &ayb[1], &c__1);
- _starpu_dla_lin_berr__(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
- /* End of loop for each RHS. */
- }
- return 0;
- } /* _starpu_dla_gerfsx_extended__ */
|