| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 | /* dtzrzf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;/* Subroutine */ int dtzrzf_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *tau, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;    /* Local variables */    integer i__, m1, ib, nb, ki, kk, mu, nx, iws, nbmin;    extern /* Subroutine */ int xerbla_(char *, integer *), dlarzb_(	    char *, char *, char *, char *, integer *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int dlarzt_(char *, char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *), dlatrz_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    integer ldwork, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A *//*  to upper triangular form by means of orthogonal transformations. *//*  The upper trapezoidal matrix A is factored as *//*     A = ( R  0 ) * Z, *//*  where Z is an N-by-N orthogonal matrix and R is an M-by-M upper *//*  triangular matrix. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= M. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the leading M-by-N upper trapezoidal part of the *//*          array A must contain the matrix to be factorized. *//*          On exit, the leading M-by-M upper triangular part of A *//*          contains the upper triangular matrix R, and elements M+1 to *//*          N of the first M rows of A, with the array TAU, represent the *//*          orthogonal matrix Z as a product of M elementary reflectors. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  TAU     (output) DOUBLE PRECISION array, dimension (M) *//*          The scalar factors of the elementary reflectors. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= max(1,M). *//*          For optimum performance LWORK >= M*NB, where NB is *//*          the optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  Based on contributions by *//*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA *//*  The factorization is obtained by Householder's method.  The kth *//*  transformation matrix, Z( k ), which is used to introduce zeros into *//*  the ( m - k + 1 )th row of A, is given in the form *//*     Z( k ) = ( I     0   ), *//*              ( 0  T( k ) ) *//*  where *//*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ), *//*                                                 (   0    ) *//*                                                 ( z( k ) ) *//*  tau is a scalar and z( k ) is an ( n - m ) element vector. *//*  tau and z( k ) are chosen to annihilate the elements of the kth row *//*  of X. *//*  The scalar tau is returned in the kth element of TAU and the vector *//*  u( k ) in the kth row of A, such that the elements of z( k ) are *//*  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in *//*  the upper triangular part of A. *//*  Z is given by *//*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < *m) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info == 0) {	if (*m == 0 || *m == *n) {	    lwkopt = 1;	} else {/*           Determine the block size. */	    nb = ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1);	    lwkopt = *m * nb;	}	work[1] = (doublereal) lwkopt;	if (*lwork < max(1,*m) && ! lquery) {	    *info = -7;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DTZRZF", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*m == 0) {	return 0;    } else if (*m == *n) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    tau[i__] = 0.;/* L10: */	}	return 0;    }    nbmin = 2;    nx = 1;    iws = *m;    if (nb > 1 && nb < *m) {/*        Determine when to cross over from blocked to unblocked code. *//* Computing MAX */	i__1 = 0, i__2 = ilaenv_(&c__3, "DGERQF", " ", m, n, &c_n1, &c_n1);	nx = max(i__1,i__2);	if (nx < *m) {/*           Determine if workspace is large enough for blocked code. */	    ldwork = *m;	    iws = ldwork * nb;	    if (*lwork < iws) {/*              Not enough workspace to use optimal NB:  reduce NB and *//*              determine the minimum value of NB. */		nb = *lwork / ldwork;/* Computing MAX */		i__1 = 2, i__2 = ilaenv_(&c__2, "DGERQF", " ", m, n, &c_n1, &			c_n1);		nbmin = max(i__1,i__2);	    }	}    }    if (nb >= nbmin && nb < *m && nx < *m) {/*        Use blocked code initially. *//*        The last kk rows are handled by the block method. *//* Computing MIN */	i__1 = *m + 1;	m1 = min(i__1,*n);	ki = (*m - nx - 1) / nb * nb;/* Computing MIN */	i__1 = *m, i__2 = ki + nb;	kk = min(i__1,i__2);	i__1 = *m - kk + 1;	i__2 = -nb;	for (i__ = *m - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; 		i__ += i__2) {/* Computing MIN */	    i__3 = *m - i__ + 1;	    ib = min(i__3,nb);/*           Compute the TZ factorization of the current block *//*           A(i:i+ib-1,i:n) */	    i__3 = *n - i__ + 1;	    i__4 = *n - *m;	    dlatrz_(&ib, &i__3, &i__4, &a[i__ + i__ * a_dim1], lda, &tau[i__], 		     &work[1]);	    if (i__ > 1) {/*              Form the triangular factor of the block reflector *//*              H = H(i+ib-1) . . . H(i+1) H(i) */		i__3 = *n - *m;		dlarzt_("Backward", "Rowwise", &i__3, &ib, &a[i__ + m1 * 			a_dim1], lda, &tau[i__], &work[1], &ldwork);/*              Apply H to A(1:i-1,i:n) from the right */		i__3 = i__ - 1;		i__4 = *n - i__ + 1;		i__5 = *n - *m;		dlarzb_("Right", "No transpose", "Backward", "Rowwise", &i__3, 			 &i__4, &ib, &i__5, &a[i__ + m1 * a_dim1], lda, &work[			1], &ldwork, &a[i__ * a_dim1 + 1], lda, &work[ib + 1], 			 &ldwork)			;	    }/* L20: */	}	mu = i__ + nb - 1;    } else {	mu = *m;    }/*     Use unblocked code to factor the last or only block */    if (mu > 0) {	i__2 = *n - *m;	dlatrz_(&mu, n, &i__2, &a[a_offset], lda, &tau[1], &work[1]);    }    work[1] = (doublereal) lwkopt;    return 0;/*     End of DTZRZF */} /* dtzrzf_ */
 |