| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 | 
							- /* dtrti2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dtrti2_(char *uplo, char *diag, integer *n, doublereal *
 
- 	a, integer *lda, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer j;
 
-     doublereal ajj;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern logical lsame_(char *, char *);
 
-     logical upper;
 
-     extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);
 
-     logical nounit;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTRTI2 computes the inverse of a real upper or lower triangular */
 
- /*  matrix. */
 
- /*  This is the Level 2 BLAS version of the algorithm. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the matrix A is upper or lower triangular. */
 
- /*          = 'U':  Upper triangular */
 
- /*          = 'L':  Lower triangular */
 
- /*  DIAG    (input) CHARACTER*1 */
 
- /*          Specifies whether or not the matrix A is unit triangular. */
 
- /*          = 'N':  Non-unit triangular */
 
- /*          = 'U':  Unit triangular */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the triangular matrix A.  If UPLO = 'U', the */
 
- /*          leading n by n upper triangular part of the array A contains */
 
- /*          the upper triangular matrix, and the strictly lower */
 
- /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 
- /*          leading n by n lower triangular part of the array A contains */
 
- /*          the lower triangular matrix, and the strictly upper */
 
- /*          triangular part of A is not referenced.  If DIAG = 'U', the */
 
- /*          diagonal elements of A are also not referenced and are */
 
- /*          assumed to be 1. */
 
- /*          On exit, the (triangular) inverse of the original matrix, in */
 
- /*          the same storage format. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -k, the k-th argument had an illegal value */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     nounit = lsame_(diag, "N");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (! nounit && ! lsame_(diag, "U")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DTRTI2", &i__1);
 
- 	return 0;
 
-     }
 
-     if (upper) {
 
- /*        Compute inverse of upper triangular matrix. */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    if (nounit) {
 
- 		a[j + j * a_dim1] = 1. / a[j + j * a_dim1];
 
- 		ajj = -a[j + j * a_dim1];
 
- 	    } else {
 
- 		ajj = -1.;
 
- 	    }
 
- /*           Compute elements 1:j-1 of j-th column. */
 
- 	    i__2 = j - 1;
 
- 	    dtrmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, &
 
- 		    a[j * a_dim1 + 1], &c__1);
 
- 	    i__2 = j - 1;
 
- 	    dscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1);
 
- /* L10: */
 
- 	}
 
-     } else {
 
- /*        Compute inverse of lower triangular matrix. */
 
- 	for (j = *n; j >= 1; --j) {
 
- 	    if (nounit) {
 
- 		a[j + j * a_dim1] = 1. / a[j + j * a_dim1];
 
- 		ajj = -a[j + j * a_dim1];
 
- 	    } else {
 
- 		ajj = -1.;
 
- 	    }
 
- 	    if (j < *n) {
 
- /*              Compute elements j+1:n of j-th column. */
 
- 		i__1 = *n - j;
 
- 		dtrmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j + 
 
- 			1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1);
 
- 		i__1 = *n - j;
 
- 		dscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1);
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DTRTI2 */
 
- } /* dtrti2_ */
 
 
  |