| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 | /* dtrexc.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__2 = 2;/* Subroutine */ int dtrexc_(char *compq, integer *n, doublereal *t, integer *	ldt, doublereal *q, integer *ldq, integer *ifst, integer *ilst, 	doublereal *work, integer *info){    /* System generated locals */    integer q_dim1, q_offset, t_dim1, t_offset, i__1;    /* Local variables */    integer nbf, nbl, here;    extern logical lsame_(char *, char *);    logical wantq;    extern /* Subroutine */ int dlaexc_(logical *, integer *, doublereal *, 	    integer *, doublereal *, integer *, integer *, integer *, integer 	    *, doublereal *, integer *), xerbla_(char *, integer *);    integer nbnext;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTREXC reorders the real Schur factorization of a real matrix *//*  A = Q*T*Q**T, so that the diagonal block of T with row index IFST is *//*  moved to row ILST. *//*  The real Schur form T is reordered by an orthogonal similarity *//*  transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors *//*  is updated by postmultiplying it with Z. *//*  T must be in Schur canonical form (as returned by DHSEQR), that is, *//*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each *//*  2-by-2 diagonal block has its diagonal elements equal and its *//*  off-diagonal elements of opposite sign. *//*  Arguments *//*  ========= *//*  COMPQ   (input) CHARACTER*1 *//*          = 'V':  update the matrix Q of Schur vectors; *//*          = 'N':  do not update Q. *//*  N       (input) INTEGER *//*          The order of the matrix T. N >= 0. *//*  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N) *//*          On entry, the upper quasi-triangular matrix T, in Schur *//*          Schur canonical form. *//*          On exit, the reordered upper quasi-triangular matrix, again *//*          in Schur canonical form. *//*  LDT     (input) INTEGER *//*          The leading dimension of the array T. LDT >= max(1,N). *//*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) *//*          On entry, if COMPQ = 'V', the matrix Q of Schur vectors. *//*          On exit, if COMPQ = 'V', Q has been postmultiplied by the *//*          orthogonal transformation matrix Z which reorders T. *//*          If COMPQ = 'N', Q is not referenced. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q.  LDQ >= max(1,N). *//*  IFST    (input/output) INTEGER *//*  ILST    (input/output) INTEGER *//*          Specify the reordering of the diagonal blocks of T. *//*          The block with row index IFST is moved to row ILST, by a *//*          sequence of transpositions between adjacent blocks. *//*          On exit, if IFST pointed on entry to the second row of a *//*          2-by-2 block, it is changed to point to the first row; ILST *//*          always points to the first row of the block in its final *//*          position (which may differ from its input value by +1 or -1). *//*          1 <= IFST <= N; 1 <= ILST <= N. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          = 1:  two adjacent blocks were too close to swap (the problem *//*                is very ill-conditioned); T may have been partially *//*                reordered, and ILST points to the first row of the *//*                current position of the block being moved. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test the input arguments. */    /* Parameter adjustments */    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --work;    /* Function Body */    *info = 0;    wantq = lsame_(compq, "V");    if (! wantq && ! lsame_(compq, "N")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*ldt < max(1,*n)) {	*info = -4;    } else if (*ldq < 1 || wantq && *ldq < max(1,*n)) {	*info = -6;    } else if (*ifst < 1 || *ifst > *n) {	*info = -7;    } else if (*ilst < 1 || *ilst > *n) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DTREXC", &i__1);	return 0;    }/*     Quick return if possible */    if (*n <= 1) {	return 0;    }/*     Determine the first row of specified block *//*     and find out it is 1 by 1 or 2 by 2. */    if (*ifst > 1) {	if (t[*ifst + (*ifst - 1) * t_dim1] != 0.) {	    --(*ifst);	}    }    nbf = 1;    if (*ifst < *n) {	if (t[*ifst + 1 + *ifst * t_dim1] != 0.) {	    nbf = 2;	}    }/*     Determine the first row of the final block *//*     and find out it is 1 by 1 or 2 by 2. */    if (*ilst > 1) {	if (t[*ilst + (*ilst - 1) * t_dim1] != 0.) {	    --(*ilst);	}    }    nbl = 1;    if (*ilst < *n) {	if (t[*ilst + 1 + *ilst * t_dim1] != 0.) {	    nbl = 2;	}    }    if (*ifst == *ilst) {	return 0;    }    if (*ifst < *ilst) {/*        Update ILST */	if (nbf == 2 && nbl == 1) {	    --(*ilst);	}	if (nbf == 1 && nbl == 2) {	    ++(*ilst);	}	here = *ifst;L10:/*        Swap block with next one below */	if (nbf == 1 || nbf == 2) {/*           Current block either 1 by 1 or 2 by 2 */	    nbnext = 1;	    if (here + nbf + 1 <= *n) {		if (t[here + nbf + 1 + (here + nbf) * t_dim1] != 0.) {		    nbnext = 2;		}	    }	    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &here, &		    nbf, &nbnext, &work[1], info);	    if (*info != 0) {		*ilst = here;		return 0;	    }	    here += nbnext;/*           Test if 2 by 2 block breaks into two 1 by 1 blocks */	    if (nbf == 2) {		if (t[here + 1 + here * t_dim1] == 0.) {		    nbf = 3;		}	    }	} else {/*           Current block consists of two 1 by 1 blocks each of which *//*           must be swapped individually */	    nbnext = 1;	    if (here + 3 <= *n) {		if (t[here + 3 + (here + 2) * t_dim1] != 0.) {		    nbnext = 2;		}	    }	    i__1 = here + 1;	    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, &		    c__1, &nbnext, &work[1], info);	    if (*info != 0) {		*ilst = here;		return 0;	    }	    if (nbnext == 1) {/*              Swap two 1 by 1 blocks, no problems possible */		dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			here, &c__1, &nbnext, &work[1], info);		++here;	    } else {/*              Recompute NBNEXT in case 2 by 2 split */		if (t[here + 2 + (here + 1) * t_dim1] == 0.) {		    nbnext = 1;		}		if (nbnext == 2) {/*                 2 by 2 Block did not split */		    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			    here, &c__1, &nbnext, &work[1], info);		    if (*info != 0) {			*ilst = here;			return 0;		    }		    here += 2;		} else {/*                 2 by 2 Block did split */		    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			    here, &c__1, &c__1, &work[1], info);		    i__1 = here + 1;		    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			    i__1, &c__1, &c__1, &work[1], info);		    here += 2;		}	    }	}	if (here < *ilst) {	    goto L10;	}    } else {	here = *ifst;L20:/*        Swap block with next one above */	if (nbf == 1 || nbf == 2) {/*           Current block either 1 by 1 or 2 by 2 */	    nbnext = 1;	    if (here >= 3) {		if (t[here - 1 + (here - 2) * t_dim1] != 0.) {		    nbnext = 2;		}	    }	    i__1 = here - nbnext;	    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, &		    nbnext, &nbf, &work[1], info);	    if (*info != 0) {		*ilst = here;		return 0;	    }	    here -= nbnext;/*           Test if 2 by 2 block breaks into two 1 by 1 blocks */	    if (nbf == 2) {		if (t[here + 1 + here * t_dim1] == 0.) {		    nbf = 3;		}	    }	} else {/*           Current block consists of two 1 by 1 blocks each of which *//*           must be swapped individually */	    nbnext = 1;	    if (here >= 3) {		if (t[here - 1 + (here - 2) * t_dim1] != 0.) {		    nbnext = 2;		}	    }	    i__1 = here - nbnext;	    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, &		    nbnext, &c__1, &work[1], info);	    if (*info != 0) {		*ilst = here;		return 0;	    }	    if (nbnext == 1) {/*              Swap two 1 by 1 blocks, no problems possible */		dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			here, &nbnext, &c__1, &work[1], info);		--here;	    } else {/*              Recompute NBNEXT in case 2 by 2 split */		if (t[here + (here - 1) * t_dim1] == 0.) {		    nbnext = 1;		}		if (nbnext == 2) {/*                 2 by 2 Block did not split */		    i__1 = here - 1;		    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			    i__1, &c__2, &c__1, &work[1], info);		    if (*info != 0) {			*ilst = here;			return 0;		    }		    here += -2;		} else {/*                 2 by 2 Block did split */		    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			    here, &c__1, &c__1, &work[1], info);		    i__1 = here - 1;		    dlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			    i__1, &c__1, &c__1, &work[1], info);		    here += -2;		}	    }	}	if (here > *ilst) {	    goto L20;	}    }    *ilst = here;    return 0;/*     End of DTREXC */} /* dtrexc_ */
 |