| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 | /* dtptri.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dtptri_(char *uplo, char *diag, integer *n, doublereal *	ap, integer *info){    /* System generated locals */    integer i__1, i__2;    /* Local variables */    integer j, jc, jj;    doublereal ajj;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, 	    doublereal *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);    integer jclast;    logical nounit;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTPTRI computes the inverse of a real upper or lower triangular *//*  matrix A stored in packed format. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  A is upper triangular; *//*          = 'L':  A is lower triangular. *//*  DIAG    (input) CHARACTER*1 *//*          = 'N':  A is non-unit triangular; *//*          = 'U':  A is unit triangular. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the upper or lower triangular matrix A, stored *//*          columnwise in a linear array.  The j-th column of A is stored *//*          in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. *//*          See below for further details. *//*          On exit, the (triangular) inverse of the original matrix, in *//*          the same packed storage format. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular *//*                matrix is singular and its inverse can not be computed. *//*  Further Details *//*  =============== *//*  A triangular matrix A can be transferred to packed storage using one *//*  of the following program segments: *//*  UPLO = 'U':                      UPLO = 'L': *//*        JC = 1                           JC = 1 *//*        DO 2 J = 1, N                    DO 2 J = 1, N *//*           DO 1 I = 1, J                    DO 1 I = J, N *//*              AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J) *//*      1    CONTINUE                    1    CONTINUE *//*           JC = JC + J                      JC = JC + N - J + 1 *//*      2 CONTINUE                       2 CONTINUE *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ap;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    nounit = lsame_(diag, "N");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (! nounit && ! lsame_(diag, "U")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DTPTRI", &i__1);	return 0;    }/*     Check for singularity if non-unit. */    if (nounit) {	if (upper) {	    jj = 0;	    i__1 = *n;	    for (*info = 1; *info <= i__1; ++(*info)) {		jj += *info;		if (ap[jj] == 0.) {		    return 0;		}/* L10: */	    }	} else {	    jj = 1;	    i__1 = *n;	    for (*info = 1; *info <= i__1; ++(*info)) {		if (ap[jj] == 0.) {		    return 0;		}		jj = jj + *n - *info + 1;/* L20: */	    }	}	*info = 0;    }    if (upper) {/*        Compute inverse of upper triangular matrix. */	jc = 1;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    if (nounit) {		ap[jc + j - 1] = 1. / ap[jc + j - 1];		ajj = -ap[jc + j - 1];	    } else {		ajj = -1.;	    }/*           Compute elements 1:j-1 of j-th column. */	    i__2 = j - 1;	    dtpmv_("Upper", "No transpose", diag, &i__2, &ap[1], &ap[jc], &		    c__1);	    i__2 = j - 1;	    dscal_(&i__2, &ajj, &ap[jc], &c__1);	    jc += j;/* L30: */	}    } else {/*        Compute inverse of lower triangular matrix. */	jc = *n * (*n + 1) / 2;	for (j = *n; j >= 1; --j) {	    if (nounit) {		ap[jc] = 1. / ap[jc];		ajj = -ap[jc];	    } else {		ajj = -1.;	    }	    if (j < *n) {/*              Compute elements j+1:n of j-th column. */		i__1 = *n - j;		dtpmv_("Lower", "No transpose", diag, &i__1, &ap[jclast], &ap[			jc + 1], &c__1);		i__1 = *n - j;		dscal_(&i__1, &ajj, &ap[jc + 1], &c__1);	    }	    jclast = jc;	    jc = jc - *n + j - 2;/* L40: */	}    }    return 0;/*     End of DTPTRI */} /* dtptri_ */
 |