| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629 | /* dsptrf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dsptrf_(char *uplo, integer *n, doublereal *ap, integer *	ipiv, integer *info){    /* System generated locals */    integer i__1, i__2;    doublereal d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, k;    doublereal t, r1, d11, d12, d21, d22;    integer kc, kk, kp;    doublereal wk;    integer kx, knc, kpc, npp;    doublereal wkm1, wkp1;    integer imax, jmax;    extern /* Subroutine */ int dspr_(char *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *);    doublereal alpha;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer kstep;    logical upper;    doublereal absakk;    extern integer idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int xerbla_(char *, integer *);    doublereal colmax, rowmax;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSPTRF computes the factorization of a real symmetric matrix A stored *//*  in packed format using the Bunch-Kaufman diagonal pivoting method: *//*     A = U*D*U**T  or  A = L*D*L**T *//*  where U (or L) is a product of permutation and unit upper (lower) *//*  triangular matrices, and D is symmetric and block diagonal with *//*  1-by-1 and 2-by-2 diagonal blocks. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the upper or lower triangle of the symmetric matrix *//*          A, packed columnwise in a linear array.  The j-th column of A *//*          is stored in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *//*          On exit, the block diagonal matrix D and the multipliers used *//*          to obtain the factor U or L, stored as a packed triangular *//*          matrix overwriting A (see below for further details). *//*  IPIV    (output) INTEGER array, dimension (N) *//*          Details of the interchanges and the block structure of D. *//*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were *//*          interchanged and D(k,k) is a 1-by-1 diagonal block. *//*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and *//*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) *//*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = *//*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were *//*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization *//*               has been completed, but the block diagonal matrix D is *//*               exactly singular, and division by zero will occur if it *//*               is used to solve a system of equations. *//*  Further Details *//*  =============== *//*  5-96 - Based on modifications by J. Lewis, Boeing Computer Services *//*         Company *//*  If UPLO = 'U', then A = U*D*U', where *//*     U = P(n)*U(n)* ... *P(k)U(k)* ..., *//*  i.e., U is a product of terms P(k)*U(k), where k decreases from n to *//*  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 *//*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as *//*  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such *//*  that if the diagonal block D(k) is of order s (s = 1 or 2), then *//*             (   I    v    0   )   k-s *//*     U(k) =  (   0    I    0   )   s *//*             (   0    0    I   )   n-k *//*                k-s   s   n-k *//*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). *//*  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), *//*  and A(k,k), and v overwrites A(1:k-2,k-1:k). *//*  If UPLO = 'L', then A = L*D*L', where *//*     L = P(1)*L(1)* ... *P(k)*L(k)* ..., *//*  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to *//*  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 *//*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as *//*  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such *//*  that if the diagonal block D(k) is of order s (s = 1 or 2), then *//*             (   I    0     0   )  k-1 *//*     L(k) =  (   0    I     0   )  s *//*             (   0    v     I   )  n-k-s+1 *//*                k-1   s  n-k-s+1 *//*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). *//*  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), *//*  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ipiv;    --ap;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSPTRF", &i__1);	return 0;    }/*     Initialize ALPHA for use in choosing pivot block size. */    alpha = (sqrt(17.) + 1.) / 8.;    if (upper) {/*        Factorize A as U*D*U' using the upper triangle of A *//*        K is the main loop index, decreasing from N to 1 in steps of *//*        1 or 2 */	k = *n;	kc = (*n - 1) * *n / 2 + 1;L10:	knc = kc;/*        If K < 1, exit from loop */	if (k < 1) {	    goto L110;	}	kstep = 1;/*        Determine rows and columns to be interchanged and whether *//*        a 1-by-1 or 2-by-2 pivot block will be used */	absakk = (d__1 = ap[kc + k - 1], abs(d__1));/*        IMAX is the row-index of the largest off-diagonal element in *//*        column K, and COLMAX is its absolute value */	if (k > 1) {	    i__1 = k - 1;	    imax = idamax_(&i__1, &ap[kc], &c__1);	    colmax = (d__1 = ap[kc + imax - 1], abs(d__1));	} else {	    colmax = 0.;	}	if (max(absakk,colmax) == 0.) {/*           Column K is zero: set INFO and continue */	    if (*info == 0) {		*info = k;	    }	    kp = k;	} else {	    if (absakk >= alpha * colmax) {/*              no interchange, use 1-by-1 pivot block */		kp = k;	    } else {/*              JMAX is the column-index of the largest off-diagonal *//*              element in row IMAX, and ROWMAX is its absolute value */		rowmax = 0.;		jmax = imax;		kx = imax * (imax + 1) / 2 + imax;		i__1 = k;		for (j = imax + 1; j <= i__1; ++j) {		    if ((d__1 = ap[kx], abs(d__1)) > rowmax) {			rowmax = (d__1 = ap[kx], abs(d__1));			jmax = j;		    }		    kx += j;/* L20: */		}		kpc = (imax - 1) * imax / 2 + 1;		if (imax > 1) {		    i__1 = imax - 1;		    jmax = idamax_(&i__1, &ap[kpc], &c__1);/* Computing MAX */		    d__2 = rowmax, d__3 = (d__1 = ap[kpc + jmax - 1], abs(			    d__1));		    rowmax = max(d__2,d__3);		}		if (absakk >= alpha * colmax * (colmax / rowmax)) {/*                 no interchange, use 1-by-1 pivot block */		    kp = k;		} else if ((d__1 = ap[kpc + imax - 1], abs(d__1)) >= alpha * 			rowmax) {/*                 interchange rows and columns K and IMAX, use 1-by-1 *//*                 pivot block */		    kp = imax;		} else {/*                 interchange rows and columns K-1 and IMAX, use 2-by-2 *//*                 pivot block */		    kp = imax;		    kstep = 2;		}	    }	    kk = k - kstep + 1;	    if (kstep == 2) {		knc = knc - k + 1;	    }	    if (kp != kk) {/*              Interchange rows and columns KK and KP in the leading *//*              submatrix A(1:k,1:k) */		i__1 = kp - 1;		dswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);		kx = kpc + kp - 1;		i__1 = kk - 1;		for (j = kp + 1; j <= i__1; ++j) {		    kx = kx + j - 1;		    t = ap[knc + j - 1];		    ap[knc + j - 1] = ap[kx];		    ap[kx] = t;/* L30: */		}		t = ap[knc + kk - 1];		ap[knc + kk - 1] = ap[kpc + kp - 1];		ap[kpc + kp - 1] = t;		if (kstep == 2) {		    t = ap[kc + k - 2];		    ap[kc + k - 2] = ap[kc + kp - 1];		    ap[kc + kp - 1] = t;		}	    }/*           Update the leading submatrix */	    if (kstep == 1) {/*              1-by-1 pivot block D(k): column k now holds *//*              W(k) = U(k)*D(k) *//*              where U(k) is the k-th column of U *//*              Perform a rank-1 update of A(1:k-1,1:k-1) as *//*              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */		r1 = 1. / ap[kc + k - 1];		i__1 = k - 1;		d__1 = -r1;		dspr_(uplo, &i__1, &d__1, &ap[kc], &c__1, &ap[1]);/*              Store U(k) in column k */		i__1 = k - 1;		dscal_(&i__1, &r1, &ap[kc], &c__1);	    } else {/*              2-by-2 pivot block D(k): columns k and k-1 now hold *//*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) *//*              where U(k) and U(k-1) are the k-th and (k-1)-th columns *//*              of U *//*              Perform a rank-2 update of A(1:k-2,1:k-2) as *//*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' *//*                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */		if (k > 2) {		    d12 = ap[k - 1 + (k - 1) * k / 2];		    d22 = ap[k - 1 + (k - 2) * (k - 1) / 2] / d12;		    d11 = ap[k + (k - 1) * k / 2] / d12;		    t = 1. / (d11 * d22 - 1.);		    d12 = t / d12;		    for (j = k - 2; j >= 1; --j) {			wkm1 = d12 * (d11 * ap[j + (k - 2) * (k - 1) / 2] - 				ap[j + (k - 1) * k / 2]);			wk = d12 * (d22 * ap[j + (k - 1) * k / 2] - ap[j + (k 				- 2) * (k - 1) / 2]);			for (i__ = j; i__ >= 1; --i__) {			    ap[i__ + (j - 1) * j / 2] = ap[i__ + (j - 1) * j /				     2] - ap[i__ + (k - 1) * k / 2] * wk - ap[				    i__ + (k - 2) * (k - 1) / 2] * wkm1;/* L40: */			}			ap[j + (k - 1) * k / 2] = wk;			ap[j + (k - 2) * (k - 1) / 2] = wkm1;/* L50: */		    }		}	    }	}/*        Store details of the interchanges in IPIV */	if (kstep == 1) {	    ipiv[k] = kp;	} else {	    ipiv[k] = -kp;	    ipiv[k - 1] = -kp;	}/*        Decrease K and return to the start of the main loop */	k -= kstep;	kc = knc - k;	goto L10;    } else {/*        Factorize A as L*D*L' using the lower triangle of A *//*        K is the main loop index, increasing from 1 to N in steps of *//*        1 or 2 */	k = 1;	kc = 1;	npp = *n * (*n + 1) / 2;L60:	knc = kc;/*        If K > N, exit from loop */	if (k > *n) {	    goto L110;	}	kstep = 1;/*        Determine rows and columns to be interchanged and whether *//*        a 1-by-1 or 2-by-2 pivot block will be used */	absakk = (d__1 = ap[kc], abs(d__1));/*        IMAX is the row-index of the largest off-diagonal element in *//*        column K, and COLMAX is its absolute value */	if (k < *n) {	    i__1 = *n - k;	    imax = k + idamax_(&i__1, &ap[kc + 1], &c__1);	    colmax = (d__1 = ap[kc + imax - k], abs(d__1));	} else {	    colmax = 0.;	}	if (max(absakk,colmax) == 0.) {/*           Column K is zero: set INFO and continue */	    if (*info == 0) {		*info = k;	    }	    kp = k;	} else {	    if (absakk >= alpha * colmax) {/*              no interchange, use 1-by-1 pivot block */		kp = k;	    } else {/*              JMAX is the column-index of the largest off-diagonal *//*              element in row IMAX, and ROWMAX is its absolute value */		rowmax = 0.;		kx = kc + imax - k;		i__1 = imax - 1;		for (j = k; j <= i__1; ++j) {		    if ((d__1 = ap[kx], abs(d__1)) > rowmax) {			rowmax = (d__1 = ap[kx], abs(d__1));			jmax = j;		    }		    kx = kx + *n - j;/* L70: */		}		kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;		if (imax < *n) {		    i__1 = *n - imax;		    jmax = imax + idamax_(&i__1, &ap[kpc + 1], &c__1);/* Computing MAX */		    d__2 = rowmax, d__3 = (d__1 = ap[kpc + jmax - imax], abs(			    d__1));		    rowmax = max(d__2,d__3);		}		if (absakk >= alpha * colmax * (colmax / rowmax)) {/*                 no interchange, use 1-by-1 pivot block */		    kp = k;		} else if ((d__1 = ap[kpc], abs(d__1)) >= alpha * rowmax) {/*                 interchange rows and columns K and IMAX, use 1-by-1 *//*                 pivot block */		    kp = imax;		} else {/*                 interchange rows and columns K+1 and IMAX, use 2-by-2 *//*                 pivot block */		    kp = imax;		    kstep = 2;		}	    }	    kk = k + kstep - 1;	    if (kstep == 2) {		knc = knc + *n - k + 1;	    }	    if (kp != kk) {/*              Interchange rows and columns KK and KP in the trailing *//*              submatrix A(k:n,k:n) */		if (kp < *n) {		    i__1 = *n - kp;		    dswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1], 			     &c__1);		}		kx = knc + kp - kk;		i__1 = kp - 1;		for (j = kk + 1; j <= i__1; ++j) {		    kx = kx + *n - j + 1;		    t = ap[knc + j - kk];		    ap[knc + j - kk] = ap[kx];		    ap[kx] = t;/* L80: */		}		t = ap[knc];		ap[knc] = ap[kpc];		ap[kpc] = t;		if (kstep == 2) {		    t = ap[kc + 1];		    ap[kc + 1] = ap[kc + kp - k];		    ap[kc + kp - k] = t;		}	    }/*           Update the trailing submatrix */	    if (kstep == 1) {/*              1-by-1 pivot block D(k): column k now holds *//*              W(k) = L(k)*D(k) *//*              where L(k) is the k-th column of L */		if (k < *n) {/*                 Perform a rank-1 update of A(k+1:n,k+1:n) as *//*                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */		    r1 = 1. / ap[kc];		    i__1 = *n - k;		    d__1 = -r1;		    dspr_(uplo, &i__1, &d__1, &ap[kc + 1], &c__1, &ap[kc + *n 			    - k + 1]);/*                 Store L(k) in column K */		    i__1 = *n - k;		    dscal_(&i__1, &r1, &ap[kc + 1], &c__1);		}	    } else {/*              2-by-2 pivot block D(k): columns K and K+1 now hold *//*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) *//*              where L(k) and L(k+1) are the k-th and (k+1)-th columns *//*              of L */		if (k < *n - 1) {/*                 Perform a rank-2 update of A(k+2:n,k+2:n) as *//*                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' *//*                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' */		    d21 = ap[k + 1 + (k - 1) * ((*n << 1) - k) / 2];		    d11 = ap[k + 1 + k * ((*n << 1) - k - 1) / 2] / d21;		    d22 = ap[k + (k - 1) * ((*n << 1) - k) / 2] / d21;		    t = 1. / (d11 * d22 - 1.);		    d21 = t / d21;		    i__1 = *n;		    for (j = k + 2; j <= i__1; ++j) {			wk = d21 * (d11 * ap[j + (k - 1) * ((*n << 1) - k) / 				2] - ap[j + k * ((*n << 1) - k - 1) / 2]);			wkp1 = d21 * (d22 * ap[j + k * ((*n << 1) - k - 1) / 				2] - ap[j + (k - 1) * ((*n << 1) - k) / 2]);			i__2 = *n;			for (i__ = j; i__ <= i__2; ++i__) {			    ap[i__ + (j - 1) * ((*n << 1) - j) / 2] = ap[i__ 				    + (j - 1) * ((*n << 1) - j) / 2] - ap[i__ 				    + (k - 1) * ((*n << 1) - k) / 2] * wk - 				    ap[i__ + k * ((*n << 1) - k - 1) / 2] * 				    wkp1;/* L90: */			}			ap[j + (k - 1) * ((*n << 1) - k) / 2] = wk;			ap[j + k * ((*n << 1) - k - 1) / 2] = wkp1;/* L100: */		    }		}	    }	}/*        Store details of the interchanges in IPIV */	if (kstep == 1) {	    ipiv[k] = kp;	} else {	    ipiv[k] = -kp;	    ipiv[k + 1] = -kp;	}/*        Increase K and return to the start of the main loop */	k += kstep;	kc = knc + *n - k + 2;	goto L60;    }L110:    return 0;/*     End of DSPTRF */} /* dsptrf_ */
 |