| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | 
							- /* dspsv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dspsv_(char *uplo, integer *n, integer *nrhs, doublereal 
 
- 	*ap, integer *ipiv, doublereal *b, integer *ldb, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, i__1;
 
-     /* Local variables */
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *), dsptrf_(
 
- 	    char *, integer *, doublereal *, integer *, integer *), 
 
- 	    dsptrs_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPSV computes the solution to a real system of linear equations */
 
- /*     A * X = B, */
 
- /*  where A is an N-by-N symmetric matrix stored in packed format and X */
 
- /*  and B are N-by-NRHS matrices. */
 
- /*  The diagonal pivoting method is used to factor A as */
 
- /*     A = U * D * U**T,  if UPLO = 'U', or */
 
- /*     A = L * D * L**T,  if UPLO = 'L', */
 
- /*  where U (or L) is a product of permutation and unit upper (lower) */
 
- /*  triangular matrices, D is symmetric and block diagonal with 1-by-1 */
 
- /*  and 2-by-2 diagonal blocks.  The factored form of A is then used to */
 
- /*  solve the system of equations A * X = B. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          A, packed columnwise in a linear array.  The j-th column of A */
 
- /*          is stored in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          See below for further details. */
 
- /*          On exit, the block diagonal matrix D and the multipliers used */
 
- /*          to obtain the factor U or L from the factorization */
 
- /*          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as */
 
- /*          a packed triangular matrix in the same storage format as A. */
 
- /*  IPIV    (output) INTEGER array, dimension (N) */
 
- /*          Details of the interchanges and the block structure of D, as */
 
- /*          determined by DSPTRF.  If IPIV(k) > 0, then rows and columns */
 
- /*          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 */
 
- /*          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, */
 
- /*          then rows and columns k-1 and -IPIV(k) were interchanged and */
 
- /*          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and */
 
- /*          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and */
 
- /*          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 */
 
- /*          diagonal block. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N-by-NRHS right hand side matrix B. */
 
- /*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization */
 
- /*                has been completed, but the block diagonal matrix D is */
 
- /*                exactly singular, so the solution could not be */
 
- /*                computed. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The packed storage scheme is illustrated by the following example */
 
- /*  when N = 4, UPLO = 'U': */
 
- /*  Two-dimensional storage of the symmetric matrix A: */
 
- /*     a11 a12 a13 a14 */
 
- /*         a22 a23 a24 */
 
- /*             a33 a34     (aij = aji) */
 
- /*                 a44 */
 
- /*  Packed storage of the upper triangle of A: */
 
- /*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
 
- /*  ===================================================================== */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --ipiv;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -3;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSPSV ", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Compute the factorization A = U*D*U' or A = L*D*L'. */
 
-     dsptrf_(uplo, n, &ap[1], &ipiv[1], info);
 
-     if (*info == 0) {
 
- /*        Solve the system A*X = B, overwriting B with X. */
 
- 	dsptrs_(uplo, n, nrhs, &ap[1], &ipiv[1], &b[b_offset], ldb, info);
 
-     }
 
-     return 0;
 
- /*     End of DSPSV */
 
- } /* dspsv_ */
 
 
  |