| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714 | /* dsbtrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b9 = 0.;static doublereal c_b10 = 1.;static integer c__1 = 1;/* Subroutine */ int dsbtrd_(char *vect, char *uplo, integer *n, integer *kd, 	doublereal *ab, integer *ldab, doublereal *d__, doublereal *e, 	doublereal *q, integer *ldq, doublereal *work, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4, 	    i__5;    /* Local variables */    integer i__, j, k, l, i2, j1, j2, nq, nr, kd1, ibl, iqb, kdn, jin, nrt, 	    kdm1, inca, jend, lend, jinc, incx, last;    doublereal temp;    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    integer j1end, j1inc, iqend;    extern logical lsame_(char *, char *);    logical initq, wantq, upper;    extern /* Subroutine */ int dlar2v_(integer *, doublereal *, doublereal *, 	     doublereal *, integer *, doublereal *, doublereal *, integer *);    integer iqaend;    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *), xerbla_(char *, integer *), dlargv_(	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *), dlartv_(integer *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSBTRD reduces a real symmetric band matrix A to symmetric *//*  tridiagonal form T by an orthogonal similarity transformation: *//*  Q**T * A * Q = T. *//*  Arguments *//*  ========= *//*  VECT    (input) CHARACTER*1 *//*          = 'N':  do not form Q; *//*          = 'V':  form Q; *//*          = 'U':  update a matrix X, by forming X*Q. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  KD      (input) INTEGER *//*          The number of superdiagonals of the matrix A if UPLO = 'U', *//*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix A, stored in the first KD+1 rows of the array.  The *//*          j-th column of A is stored in the j-th column of the array AB *//*          as follows: *//*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *//*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). *//*          On exit, the diagonal elements of AB are overwritten by the *//*          diagonal elements of the tridiagonal matrix T; if KD > 0, the *//*          elements on the first superdiagonal (if UPLO = 'U') or the *//*          first subdiagonal (if UPLO = 'L') are overwritten by the *//*          off-diagonal elements of T; the rest of AB is overwritten by *//*          values generated during the reduction. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KD+1. *//*  D       (output) DOUBLE PRECISION array, dimension (N) *//*          The diagonal elements of the tridiagonal matrix T. *//*  E       (output) DOUBLE PRECISION array, dimension (N-1) *//*          The off-diagonal elements of the tridiagonal matrix T: *//*          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. *//*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) *//*          On entry, if VECT = 'U', then Q must contain an N-by-N *//*          matrix X; if VECT = 'N' or 'V', then Q need not be set. *//*          On exit: *//*          if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; *//*          if VECT = 'U', Q contains the product X*Q; *//*          if VECT = 'N', the array Q is not referenced. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q. *//*          LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  Modified by Linda Kaufman, Bell Labs. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --d__;    --e;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --work;    /* Function Body */    initq = lsame_(vect, "V");    wantq = initq || lsame_(vect, "U");    upper = lsame_(uplo, "U");    kd1 = *kd + 1;    kdm1 = *kd - 1;    incx = *ldab - 1;    iqend = 1;    *info = 0;    if (! wantq && ! lsame_(vect, "N")) {	*info = -1;    } else if (! upper && ! lsame_(uplo, "L")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*kd < 0) {	*info = -4;    } else if (*ldab < kd1) {	*info = -6;    } else if (*ldq < max(1,*n) && wantq) {	*info = -10;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSBTRD", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Initialize Q to the unit matrix, if needed */    if (initq) {	dlaset_("Full", n, n, &c_b9, &c_b10, &q[q_offset], ldq);    }/*     Wherever possible, plane rotations are generated and applied in *//*     vector operations of length NR over the index set J1:J2:KD1. *//*     The cosines and sines of the plane rotations are stored in the *//*     arrays D and WORK. */    inca = kd1 * *ldab;/* Computing MIN */    i__1 = *n - 1;    kdn = min(i__1,*kd);    if (upper) {	if (*kd > 1) {/*           Reduce to tridiagonal form, working with upper triangle */	    nr = 0;	    j1 = kdn + 2;	    j2 = 1;	    i__1 = *n - 2;	    for (i__ = 1; i__ <= i__1; ++i__) {/*              Reduce i-th row of matrix to tridiagonal form */		for (k = kdn + 1; k >= 2; --k) {		    j1 += kdn;		    j2 += kdn;		    if (nr > 0) {/*                    generate plane rotations to annihilate nonzero *//*                    elements which have been created outside the band */			dlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &				work[j1], &kd1, &d__[j1], &kd1);/*                    apply rotations from the right *//*                    Dependent on the the number of diagonals either *//*                    DLARTV or DROT is used */			if (nr >= (*kd << 1) - 1) {			    i__2 = *kd - 1;			    for (l = 1; l <= i__2; ++l) {				dlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1], 					&inca, &ab[l + j1 * ab_dim1], &inca, &					d__[j1], &work[j1], &kd1);/* L10: */			    }			} else {			    jend = j1 + (nr - 1) * kd1;			    i__2 = jend;			    i__3 = kd1;			    for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <= 				    i__2; jinc += i__3) {				drot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &					c__1, &ab[jinc * ab_dim1 + 1], &c__1, 					&d__[jinc], &work[jinc]);/* L20: */			    }			}		    }		    if (k > 2) {			if (k <= *n - i__ + 1) {/*                       generate plane rotation to annihilate a(i,i+k-1) *//*                       within the band */			    dlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1], &ab[*kd - k + 2 + (i__ + k - 1) * 				    ab_dim1], &d__[i__ + k - 1], &work[i__ + 				    k - 1], &temp);			    ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] = temp;/*                       apply rotation from the right */			    i__3 = k - 3;			    drot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) * 				    ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ + 				    k - 1) * ab_dim1], &c__1, &d__[i__ + k - 				    1], &work[i__ + k - 1]);			}			++nr;			j1 = j1 - kdn - 1;		    }/*                 apply plane rotations from both sides to diagonal *//*                 blocks */		    if (nr > 0) {			dlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 + 				j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca, 				 &d__[j1], &work[j1], &kd1);		    }/*                 apply plane rotations from the left */		    if (nr > 0) {			if ((*kd << 1) - 1 < nr) {/*                    Dependent on the the number of diagonals either *//*                    DLARTV or DROT is used */			    i__3 = *kd - 1;			    for (l = 1; l <= i__3; ++l) {				if (j2 + l > *n) {				    nrt = nr - 1;				} else {				    nrt = nr;				}				if (nrt > 0) {				    dlartv_(&nrt, &ab[*kd - l + (j1 + l) * 					    ab_dim1], &inca, &ab[*kd - l + 1 					    + (j1 + l) * ab_dim1], &inca, &					    d__[j1], &work[j1], &kd1);				}/* L30: */			    }			} else {			    j1end = j1 + kd1 * (nr - 2);			    if (j1end >= j1) {				i__3 = j1end;				i__2 = kd1;				for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=					 i__3; jin += i__2) {				    i__4 = *kd - 1;				    drot_(&i__4, &ab[*kd - 1 + (jin + 1) * 					    ab_dim1], &incx, &ab[*kd + (jin + 					    1) * ab_dim1], &incx, &d__[jin], &					    work[jin]);/* L40: */				}			    }/* Computing MIN */			    i__2 = kdm1, i__3 = *n - j2;			    lend = min(i__2,i__3);			    last = j1end + kd1;			    if (lend > 0) {				drot_(&lend, &ab[*kd - 1 + (last + 1) * 					ab_dim1], &incx, &ab[*kd + (last + 1) 					* ab_dim1], &incx, &d__[last], &work[					last]);			    }			}		    }		    if (wantq) {/*                    accumulate product of plane rotations in Q */			if (initq) {/*                 take advantage of the fact that Q was *//*                 initially the Identity matrix */			    iqend = max(iqend,j2);/* Computing MAX */			    i__2 = 0, i__3 = k - 3;			    i2 = max(i__2,i__3);			    iqaend = i__ * *kd + 1;			    if (k == 2) {				iqaend += *kd;			    }			    iqaend = min(iqaend,iqend);			    i__2 = j2;			    i__3 = kd1;			    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j 				    += i__3) {				ibl = i__ - i2 / kdm1;				++i2;/* Computing MAX */				i__4 = 1, i__5 = j - ibl;				iqb = max(i__4,i__5);				nq = iqaend + 1 - iqb;/* Computing MIN */				i__4 = iqaend + *kd;				iqaend = min(i__4,iqend);				drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, 					&q[iqb + j * q_dim1], &c__1, &d__[j], 					&work[j]);/* L50: */			    }			} else {			    i__3 = j2;			    i__2 = kd1;			    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j 				    += i__2) {				drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[					j * q_dim1 + 1], &c__1, &d__[j], &					work[j]);/* L60: */			    }			}		    }		    if (j2 + kdn > *n) {/*                    adjust J2 to keep within the bounds of the matrix */			--nr;			j2 = j2 - kdn - 1;		    }		    i__2 = j2;		    i__3 = kd1;		    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) 			    {/*                    create nonzero element a(j-1,j+kd) outside the band *//*                    and store it in WORK */			work[j + *kd] = work[j] * ab[(j + *kd) * ab_dim1 + 1];			ab[(j + *kd) * ab_dim1 + 1] = d__[j] * ab[(j + *kd) * 				ab_dim1 + 1];/* L70: */		    }/* L80: */		}/* L90: */	    }	}	if (*kd > 0) {/*           copy off-diagonal elements to E */	    i__1 = *n - 1;	    for (i__ = 1; i__ <= i__1; ++i__) {		e[i__] = ab[*kd + (i__ + 1) * ab_dim1];/* L100: */	    }	} else {/*           set E to zero if original matrix was diagonal */	    i__1 = *n - 1;	    for (i__ = 1; i__ <= i__1; ++i__) {		e[i__] = 0.;/* L110: */	    }	}/*        copy diagonal elements to D */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    d__[i__] = ab[kd1 + i__ * ab_dim1];/* L120: */	}    } else {	if (*kd > 1) {/*           Reduce to tridiagonal form, working with lower triangle */	    nr = 0;	    j1 = kdn + 2;	    j2 = 1;	    i__1 = *n - 2;	    for (i__ = 1; i__ <= i__1; ++i__) {/*              Reduce i-th column of matrix to tridiagonal form */		for (k = kdn + 1; k >= 2; --k) {		    j1 += kdn;		    j2 += kdn;		    if (nr > 0) {/*                    generate plane rotations to annihilate nonzero *//*                    elements which have been created outside the band */			dlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &				work[j1], &kd1, &d__[j1], &kd1);/*                    apply plane rotations from one side *//*                    Dependent on the the number of diagonals either *//*                    DLARTV or DROT is used */			if (nr > (*kd << 1) - 1) {			    i__3 = *kd - 1;			    for (l = 1; l <= i__3; ++l) {				dlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) * 					ab_dim1], &inca, &ab[kd1 - l + 1 + (					j1 - kd1 + l) * ab_dim1], &inca, &d__[					j1], &work[j1], &kd1);/* L130: */			    }			} else {			    jend = j1 + kd1 * (nr - 1);			    i__3 = jend;			    i__2 = kd1;			    for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <= 				    i__3; jinc += i__2) {				drot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1], &incx, &ab[kd1 + (jinc - *kd) * 					ab_dim1], &incx, &d__[jinc], &work[					jinc]);/* L140: */			    }			}		    }		    if (k > 2) {			if (k <= *n - i__ + 1) {/*                       generate plane rotation to annihilate a(i+k-1,i) *//*                       within the band */			    dlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ * 				    ab_dim1], &d__[i__ + k - 1], &work[i__ + 				    k - 1], &temp);			    ab[k - 1 + i__ * ab_dim1] = temp;/*                       apply rotation from the left */			    i__2 = k - 3;			    i__3 = *ldab - 1;			    i__4 = *ldab - 1;			    drot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &				    i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &				    i__4, &d__[i__ + k - 1], &work[i__ + k - 				    1]);			}			++nr;			j1 = j1 - kdn - 1;		    }/*                 apply plane rotations from both sides to diagonal *//*                 blocks */		    if (nr > 0) {			dlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 * 				ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &				inca, &d__[j1], &work[j1], &kd1);		    }/*                 apply plane rotations from the right *//*                    Dependent on the the number of diagonals either *//*                    DLARTV or DROT is used */		    if (nr > 0) {			if (nr > (*kd << 1) - 1) {			    i__2 = *kd - 1;			    for (l = 1; l <= i__2; ++l) {				if (j2 + l > *n) {				    nrt = nr - 1;				} else {				    nrt = nr;				}				if (nrt > 0) {				    dlartv_(&nrt, &ab[l + 2 + (j1 - 1) * 					    ab_dim1], &inca, &ab[l + 1 + j1 * 					    ab_dim1], &inca, &d__[j1], &work[					    j1], &kd1);				}/* L150: */			    }			} else {			    j1end = j1 + kd1 * (nr - 2);			    if (j1end >= j1) {				i__2 = j1end;				i__3 = kd1;				for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 : 					j1inc <= i__2; j1inc += i__3) {				    drot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 + 					    3], &c__1, &ab[j1inc * ab_dim1 + 					    2], &c__1, &d__[j1inc], &work[					    j1inc]);/* L160: */				}			    }/* Computing MIN */			    i__3 = kdm1, i__2 = *n - j2;			    lend = min(i__3,i__2);			    last = j1end + kd1;			    if (lend > 0) {				drot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &					c__1, &ab[last * ab_dim1 + 2], &c__1, 					&d__[last], &work[last]);			    }			}		    }		    if (wantq) {/*                    accumulate product of plane rotations in Q */			if (initq) {/*                 take advantage of the fact that Q was *//*                 initially the Identity matrix */			    iqend = max(iqend,j2);/* Computing MAX */			    i__3 = 0, i__2 = k - 3;			    i2 = max(i__3,i__2);			    iqaend = i__ * *kd + 1;			    if (k == 2) {				iqaend += *kd;			    }			    iqaend = min(iqaend,iqend);			    i__3 = j2;			    i__2 = kd1;			    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j 				    += i__2) {				ibl = i__ - i2 / kdm1;				++i2;/* Computing MAX */				i__4 = 1, i__5 = j - ibl;				iqb = max(i__4,i__5);				nq = iqaend + 1 - iqb;/* Computing MIN */				i__4 = iqaend + *kd;				iqaend = min(i__4,iqend);				drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, 					&q[iqb + j * q_dim1], &c__1, &d__[j], 					&work[j]);/* L170: */			    }			} else {			    i__2 = j2;			    i__3 = kd1;			    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j 				    += i__3) {				drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[					j * q_dim1 + 1], &c__1, &d__[j], &					work[j]);/* L180: */			    }			}		    }		    if (j2 + kdn > *n) {/*                    adjust J2 to keep within the bounds of the matrix */			--nr;			j2 = j2 - kdn - 1;		    }		    i__3 = j2;		    i__2 = kd1;		    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) 			    {/*                    create nonzero element a(j+kd,j-1) outside the *//*                    band and store it in WORK */			work[j + *kd] = work[j] * ab[kd1 + j * ab_dim1];			ab[kd1 + j * ab_dim1] = d__[j] * ab[kd1 + j * ab_dim1]				;/* L190: */		    }/* L200: */		}/* L210: */	    }	}	if (*kd > 0) {/*           copy off-diagonal elements to E */	    i__1 = *n - 1;	    for (i__ = 1; i__ <= i__1; ++i__) {		e[i__] = ab[i__ * ab_dim1 + 2];/* L220: */	    }	} else {/*           set E to zero if original matrix was diagonal */	    i__1 = *n - 1;	    for (i__ = 1; i__ <= i__1; ++i__) {		e[i__] = 0.;/* L230: */	    }	}/*        copy diagonal elements to D */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    d__[i__] = ab[i__ * ab_dim1 + 1];/* L240: */	}    }    return 0;/*     End of DSBTRD */} /* dsbtrd_ */
 |