| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 | /* dpoequ.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dpoequ_(integer *n, doublereal *a, integer *lda, 	doublereal *s, doublereal *scond, doublereal *amax, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__;    doublereal smin;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPOEQU computes row and column scalings intended to equilibrate a *//*  symmetric positive definite matrix A and reduce its condition number *//*  (with respect to the two-norm).  S contains the scale factors, *//*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with *//*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This *//*  choice of S puts the condition number of B within a factor N of the *//*  smallest possible condition number over all possible diagonal *//*  scalings. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          The N-by-N symmetric positive definite matrix whose scaling *//*          factors are to be computed.  Only the diagonal elements of A *//*          are referenced. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  S       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, S contains the scale factors for A. *//*  SCOND   (output) DOUBLE PRECISION *//*          If INFO = 0, S contains the ratio of the smallest S(i) to *//*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too *//*          large nor too small, it is not worth scaling by S. *//*  AMAX    (output) DOUBLE PRECISION *//*          Absolute value of largest matrix element.  If AMAX is very *//*          close to overflow or very close to underflow, the matrix *//*          should be scaled. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --s;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*lda < max(1,*n)) {	*info = -3;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPOEQU", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	*scond = 1.;	*amax = 0.;	return 0;    }/*     Find the minimum and maximum diagonal elements. */    s[1] = a[a_dim1 + 1];    smin = s[1];    *amax = s[1];    i__1 = *n;    for (i__ = 2; i__ <= i__1; ++i__) {	s[i__] = a[i__ + i__ * a_dim1];/* Computing MIN */	d__1 = smin, d__2 = s[i__];	smin = min(d__1,d__2);/* Computing MAX */	d__1 = *amax, d__2 = s[i__];	*amax = max(d__1,d__2);/* L10: */    }    if (smin <= 0.) {/*        Find the first non-positive diagonal element and return. */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (s[i__] <= 0.) {		*info = i__;		return 0;	    }/* L20: */	}    } else {/*        Set the scale factors to the reciprocals *//*        of the diagonal elements. */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    s[i__] = 1. / sqrt(s[i__]);/* L30: */	}/*        Compute SCOND = min(S(I)) / max(S(I)) */	*scond = sqrt(smin) / sqrt(*amax);    }    return 0;/*     End of DPOEQU */} /* dpoequ_ */
 |