| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 | /* dpftrf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b12 = 1.;static doublereal c_b15 = -1.;/* Subroutine */ int dpftrf_(char *transr, char *uplo, integer *n, doublereal 	*a, integer *info){    /* System generated locals */    integer i__1, i__2;    /* Local variables */    integer k, n1, n2;    logical normaltransr;    extern logical lsame_(char *, char *);    logical lower;    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *), dsyrk_(	    char *, char *, integer *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *),	     xerbla_(char *, integer *);    logical nisodd;    extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *, 	    integer *, integer *);/*  -- LAPACK routine (version 3.2)                                    -- *//*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- *//*  -- November 2008                                                   -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*  Purpose *//*  ======= *//*  DPFTRF computes the Cholesky factorization of a real symmetric *//*  positive definite matrix A. *//*  The factorization has the form *//*     A = U**T * U,  if UPLO = 'U', or *//*     A = L  * L**T,  if UPLO = 'L', *//*  where U is an upper triangular matrix and L is lower triangular. *//*  This is the block version of the algorithm, calling Level 3 BLAS. *//*  Arguments *//*  ========= *//*  TRANSR    (input) CHARACTER *//*          = 'N':  The Normal TRANSR of RFP A is stored; *//*          = 'T':  The Transpose TRANSR of RFP A is stored. *//*  UPLO    (input) CHARACTER *//*          = 'U':  Upper triangle of RFP A is stored; *//*          = 'L':  Lower triangle of RFP A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); *//*          On entry, the symmetric matrix A in RFP format. RFP format is *//*          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' *//*          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is *//*          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is *//*          the transpose of RFP A as defined when *//*          TRANSR = 'N'. The contents of RFP A are defined by UPLO as *//*          follows: If UPLO = 'U' the RFP A contains the NT elements of *//*          upper packed A. If UPLO = 'L' the RFP A contains the elements *//*          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = *//*          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N *//*          is odd. See the Note below for more details. *//*          On exit, if INFO = 0, the factor U or L from the Cholesky *//*          factorization RFP A = U**T*U or RFP A = L*L**T. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the leading minor of order i is not *//*                positive definite, and the factorization could not be *//*                completed. *//*  Notes *//*  ===== *//*  We first consider Rectangular Full Packed (RFP) Format when N is *//*  even. We give an example where N = 6. *//*      AP is Upper             AP is Lower *//*   00 01 02 03 04 05       00 *//*      11 12 13 14 15       10 11 *//*         22 23 24 25       20 21 22 *//*            33 34 35       30 31 32 33 *//*               44 45       40 41 42 43 44 *//*                  55       50 51 52 53 54 55 *//*  Let TRANSR = 'N'. RFP holds AP as follows: *//*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last *//*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of *//*  the transpose of the first three columns of AP upper. *//*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first *//*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of *//*  the transpose of the last three columns of AP lower. *//*  This covers the case N even and TRANSR = 'N'. *//*         RFP A                   RFP A *//*        03 04 05                33 43 53 *//*        13 14 15                00 44 54 *//*        23 24 25                10 11 55 *//*        33 34 35                20 21 22 *//*        00 44 45                30 31 32 *//*        01 11 55                40 41 42 *//*        02 12 22                50 51 52 *//*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the *//*  transpose of RFP A above. One therefore gets: *//*           RFP A                   RFP A *//*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 *//*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 *//*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 *//*  We first consider Rectangular Full Packed (RFP) Format when N is *//*  odd. We give an example where N = 5. *//*     AP is Upper                 AP is Lower *//*   00 01 02 03 04              00 *//*      11 12 13 14              10 11 *//*         22 23 24              20 21 22 *//*            33 34              30 31 32 33 *//*               44              40 41 42 43 44 *//*  Let TRANSR = 'N'. RFP holds AP as follows: *//*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last *//*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of *//*  the transpose of the first two columns of AP upper. *//*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first *//*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of *//*  the transpose of the last two columns of AP lower. *//*  This covers the case N odd and TRANSR = 'N'. *//*         RFP A                   RFP A *//*        02 03 04                00 33 43 *//*        12 13 14                10 11 44 *//*        22 23 24                20 21 22 *//*        00 33 34                30 31 32 *//*        01 11 44                40 41 42 *//*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the *//*  transpose of RFP A above. One therefore gets: *//*           RFP A                   RFP A *//*     02 12 22 00 01             00 10 20 30 40 50 *//*     03 13 23 33 11             33 11 21 31 41 51 *//*     04 14 24 34 44             43 44 22 32 42 52 *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    *info = 0;    normaltransr = lsame_(transr, "N");    lower = lsame_(uplo, "L");    if (! normaltransr && ! lsame_(transr, "T")) {	*info = -1;    } else if (! lower && ! lsame_(uplo, "U")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPFTRF", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     If N is odd, set NISODD = .TRUE. *//*     If N is even, set K = N/2 and NISODD = .FALSE. */    if (*n % 2 == 0) {	k = *n / 2;	nisodd = FALSE_;    } else {	nisodd = TRUE_;    }/*     Set N1 and N2 depending on LOWER */    if (lower) {	n2 = *n / 2;	n1 = *n - n2;    } else {	n1 = *n / 2;	n2 = *n - n1;    }/*     start execution: there are eight cases */    if (nisodd) {/*        N is odd */	if (normaltransr) {/*           N is odd and TRANSR = 'N' */	    if (lower) {/*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) *//*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) *//*             T1 -> a(0), T2 -> a(n), S -> a(n1) */		dpotrf_("L", &n1, a, n, info);		if (*info > 0) {		    return 0;		}		dtrsm_("R", "L", "T", "N", &n2, &n1, &c_b12, a, n, &a[n1], n);		dsyrk_("U", "N", &n2, &n1, &c_b15, &a[n1], n, &c_b12, &a[*n], 			n);		dpotrf_("U", &n2, &a[*n], n, info);		if (*info > 0) {		    *info += n1;		}	    } else {/*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) *//*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) *//*             T1 -> a(n2), T2 -> a(n1), S -> a(0) */		dpotrf_("L", &n1, &a[n2], n, info);		if (*info > 0) {		    return 0;		}		dtrsm_("L", "L", "N", "N", &n1, &n2, &c_b12, &a[n2], n, a, n);		dsyrk_("U", "T", &n2, &n1, &c_b15, a, n, &c_b12, &a[n1], n);		dpotrf_("U", &n2, &a[n1], n, info);		if (*info > 0) {		    *info += n1;		}	    }	} else {/*           N is odd and TRANSR = 'T' */	    if (lower) {/*              SRPA for LOWER, TRANSPOSE and N is odd *//*              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) *//*              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */		dpotrf_("U", &n1, a, &n1, info);		if (*info > 0) {		    return 0;		}		dtrsm_("L", "U", "T", "N", &n1, &n2, &c_b12, a, &n1, &a[n1 * 			n1], &n1);		dsyrk_("L", "T", &n2, &n1, &c_b15, &a[n1 * n1], &n1, &c_b12, &			a[1], &n1);		dpotrf_("L", &n2, &a[1], &n1, info);		if (*info > 0) {		    *info += n1;		}	    } else {/*              SRPA for UPPER, TRANSPOSE and N is odd *//*              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) *//*              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */		dpotrf_("U", &n1, &a[n2 * n2], &n2, info);		if (*info > 0) {		    return 0;		}		dtrsm_("R", "U", "N", "N", &n2, &n1, &c_b12, &a[n2 * n2], &n2, 			 a, &n2);		dsyrk_("L", "N", &n2, &n1, &c_b15, a, &n2, &c_b12, &a[n1 * n2], &n2);		dpotrf_("L", &n2, &a[n1 * n2], &n2, info);		if (*info > 0) {		    *info += n1;		}	    }	}    } else {/*        N is even */	if (normaltransr) {/*           N is even and TRANSR = 'N' */	    if (lower) {/*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) *//*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) *//*              T1 -> a(1), T2 -> a(0), S -> a(k+1) */		i__1 = *n + 1;		dpotrf_("L", &k, &a[1], &i__1, info);		if (*info > 0) {		    return 0;		}		i__1 = *n + 1;		i__2 = *n + 1;		dtrsm_("R", "L", "T", "N", &k, &k, &c_b12, &a[1], &i__1, &a[k 			+ 1], &i__2);		i__1 = *n + 1;		i__2 = *n + 1;		dsyrk_("U", "N", &k, &k, &c_b15, &a[k + 1], &i__1, &c_b12, a, 			&i__2);		i__1 = *n + 1;		dpotrf_("U", &k, a, &i__1, info);		if (*info > 0) {		    *info += k;		}	    } else {/*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) *//*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0) *//*              T1 -> a(k+1), T2 -> a(k), S -> a(0) */		i__1 = *n + 1;		dpotrf_("L", &k, &a[k + 1], &i__1, info);		if (*info > 0) {		    return 0;		}		i__1 = *n + 1;		i__2 = *n + 1;		dtrsm_("L", "L", "N", "N", &k, &k, &c_b12, &a[k + 1], &i__1, 			a, &i__2);		i__1 = *n + 1;		i__2 = *n + 1;		dsyrk_("U", "T", &k, &k, &c_b15, a, &i__1, &c_b12, &a[k], &			i__2);		i__1 = *n + 1;		dpotrf_("U", &k, &a[k], &i__1, info);		if (*info > 0) {		    *info += k;		}	    }	} else {/*           N is even and TRANSR = 'T' */	    if (lower) {/*              SRPA for LOWER, TRANSPOSE and N is even (see paper) *//*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) *//*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */		dpotrf_("U", &k, &a[k], &k, info);		if (*info > 0) {		    return 0;		}		dtrsm_("L", "U", "T", "N", &k, &k, &c_b12, &a[k], &n1, &a[k * 			(k + 1)], &k);		dsyrk_("L", "T", &k, &k, &c_b15, &a[k * (k + 1)], &k, &c_b12, 			a, &k);		dpotrf_("L", &k, a, &k, info);		if (*info > 0) {		    *info += k;		}	    } else {/*              SRPA for UPPER, TRANSPOSE and N is even (see paper) *//*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0) *//*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */		dpotrf_("U", &k, &a[k * (k + 1)], &k, info);		if (*info > 0) {		    return 0;		}		dtrsm_("R", "U", "N", "N", &k, &k, &c_b12, &a[k * (k + 1)], &			k, a, &k);		dsyrk_("L", "N", &k, &k, &c_b15, a, &k, &c_b12, &a[k * k], &k);		dpotrf_("L", &k, &a[k * k], &k, info);		if (*info > 0) {		    *info += k;		}	    }	}    }    return 0;/*     End of DPFTRF */} /* dpftrf_ */
 |