| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 | /* dorgrq.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;/* Subroutine */ int dorgrq_(integer *m, integer *n, integer *k, doublereal *	a, integer *lda, doublereal *tau, doublereal *work, integer *lwork, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, j, l, ib, nb, ii, kk, nx, iws, nbmin, iinfo;    extern /* Subroutine */ int dorgr2_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *), 	    dlarfb_(char *, char *, char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ldwork, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DORGRQ generates an M-by-N real matrix Q with orthonormal rows, *//*  which is defined as the last M rows of a product of K elementary *//*  reflectors of order N *//*        Q  =  H(1) H(2) . . . H(k) *//*  as returned by DGERQF. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix Q. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix Q. N >= M. *//*  K       (input) INTEGER *//*          The number of elementary reflectors whose product defines the *//*          matrix Q. M >= K >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the (m-k+i)-th row must contain the vector which *//*          defines the elementary reflector H(i), for i = 1,2,...,k, as *//*          returned by DGERQF in the last k rows of its array argument *//*          A. *//*          On exit, the M-by-N matrix Q. *//*  LDA     (input) INTEGER *//*          The first dimension of the array A. LDA >= max(1,M). *//*  TAU     (input) DOUBLE PRECISION array, dimension (K) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i), as returned by DGERQF. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,M). *//*          For optimum performance LWORK >= M*NB, where NB is the *//*          optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument has an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < *m) {	*info = -2;    } else if (*k < 0 || *k > *m) {	*info = -3;    } else if (*lda < max(1,*m)) {	*info = -5;    }    if (*info == 0) {	if (*m <= 0) {	    lwkopt = 1;	} else {	    nb = ilaenv_(&c__1, "DORGRQ", " ", m, n, k, &c_n1);	    lwkopt = *m * nb;	}	work[1] = (doublereal) lwkopt;	if (*lwork < max(1,*m) && ! lquery) {	    *info = -8;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DORGRQ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*m <= 0) {	return 0;    }    nbmin = 2;    nx = 0;    iws = *m;    if (nb > 1 && nb < *k) {/*        Determine when to cross over from blocked to unblocked code. *//* Computing MAX */	i__1 = 0, i__2 = ilaenv_(&c__3, "DORGRQ", " ", m, n, k, &c_n1);	nx = max(i__1,i__2);	if (nx < *k) {/*           Determine if workspace is large enough for blocked code. */	    ldwork = *m;	    iws = ldwork * nb;	    if (*lwork < iws) {/*              Not enough workspace to use optimal NB:  reduce NB and *//*              determine the minimum value of NB. */		nb = *lwork / ldwork;/* Computing MAX */		i__1 = 2, i__2 = ilaenv_(&c__2, "DORGRQ", " ", m, n, k, &c_n1);		nbmin = max(i__1,i__2);	    }	}    }    if (nb >= nbmin && nb < *k && nx < *k) {/*        Use blocked code after the first block. *//*        The last kk rows are handled by the block method. *//* Computing MIN */	i__1 = *k, i__2 = (*k - nx + nb - 1) / nb * nb;	kk = min(i__1,i__2);/*        Set A(1:m-kk,n-kk+1:n) to zero. */	i__1 = *n;	for (j = *n - kk + 1; j <= i__1; ++j) {	    i__2 = *m - kk;	    for (i__ = 1; i__ <= i__2; ++i__) {		a[i__ + j * a_dim1] = 0.;/* L10: */	    }/* L20: */	}    } else {	kk = 0;    }/*     Use unblocked code for the first or only block. */    i__1 = *m - kk;    i__2 = *n - kk;    i__3 = *k - kk;    dorgr2_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1], &iinfo)	    ;    if (kk > 0) {/*        Use blocked code */	i__1 = *k;	i__2 = nb;	for (i__ = *k - kk + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 		i__2) {/* Computing MIN */	    i__3 = nb, i__4 = *k - i__ + 1;	    ib = min(i__3,i__4);	    ii = *m - *k + i__;	    if (ii > 1) {/*              Form the triangular factor of the block reflector *//*              H = H(i+ib-1) . . . H(i+1) H(i) */		i__3 = *n - *k + i__ + ib - 1;		dlarft_("Backward", "Rowwise", &i__3, &ib, &a[ii + a_dim1], 			lda, &tau[i__], &work[1], &ldwork);/*              Apply H' to A(1:m-k+i-1,1:n-k+i+ib-1) from the right */		i__3 = ii - 1;		i__4 = *n - *k + i__ + ib - 1;		dlarfb_("Right", "Transpose", "Backward", "Rowwise", &i__3, &			i__4, &ib, &a[ii + a_dim1], lda, &work[1], &ldwork, &			a[a_offset], lda, &work[ib + 1], &ldwork);	    }/*           Apply H' to columns 1:n-k+i+ib-1 of current block */	    i__3 = *n - *k + i__ + ib - 1;	    dorgr2_(&ib, &i__3, &ib, &a[ii + a_dim1], lda, &tau[i__], &work[1], &iinfo);/*           Set columns n-k+i+ib:n of current block to zero */	    i__3 = *n;	    for (l = *n - *k + i__ + ib; l <= i__3; ++l) {		i__4 = ii + ib - 1;		for (j = ii; j <= i__4; ++j) {		    a[j + l * a_dim1] = 0.;/* L30: */		}/* L40: */	    }/* L50: */	}    }    work[1] = (doublereal) iws;    return 0;/*     End of DORGRQ */} /* dorgrq_ */
 |