| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 | /* dopmtr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dopmtr_(char *side, char *uplo, char *trans, integer *m, 	integer *n, doublereal *ap, doublereal *tau, doublereal *c__, integer 	*ldc, doublereal *work, integer *info){    /* System generated locals */    integer c_dim1, c_offset, i__1, i__2;    /* Local variables */    integer i__, i1, i2, i3, ic, jc, ii, mi, ni, nq;    doublereal aii;    logical left;    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *);    extern logical lsame_(char *, char *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);    logical notran, forwrd;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DOPMTR overwrites the general real M-by-N matrix C with *//*                  SIDE = 'L'     SIDE = 'R' *//*  TRANS = 'N':      Q * C          C * Q *//*  TRANS = 'T':      Q**T * C       C * Q**T *//*  where Q is a real orthogonal matrix of order nq, with nq = m if *//*  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of *//*  nq-1 elementary reflectors, as returned by DSPTRD using packed *//*  storage: *//*  if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); *//*  if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'L': apply Q or Q**T from the Left; *//*          = 'R': apply Q or Q**T from the Right. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U': Upper triangular packed storage used in previous *//*                 call to DSPTRD; *//*          = 'L': Lower triangular packed storage used in previous *//*                 call to DSPTRD. *//*  TRANS   (input) CHARACTER*1 *//*          = 'N':  No transpose, apply Q; *//*          = 'T':  Transpose, apply Q**T. *//*  M       (input) INTEGER *//*          The number of rows of the matrix C. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix C. N >= 0. *//*  AP      (input) DOUBLE PRECISION array, dimension *//*                               (M*(M+1)/2) if SIDE = 'L' *//*                               (N*(N+1)/2) if SIDE = 'R' *//*          The vectors which define the elementary reflectors, as *//*          returned by DSPTRD.  AP is modified by the routine but *//*          restored on exit. *//*  TAU     (input) DOUBLE PRECISION array, dimension (M-1) if SIDE = 'L' *//*                                     or (N-1) if SIDE = 'R' *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i), as returned by DSPTRD. *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) *//*          On entry, the M-by-N matrix C. *//*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. LDC >= max(1,M). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension *//*                                   (N) if SIDE = 'L' *//*                                   (M) if SIDE = 'R' *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    --ap;    --tau;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    --work;    /* Function Body */    *info = 0;    left = lsame_(side, "L");    notran = lsame_(trans, "N");    upper = lsame_(uplo, "U");/*     NQ is the order of Q */    if (left) {	nq = *m;    } else {	nq = *n;    }    if (! left && ! lsame_(side, "R")) {	*info = -1;    } else if (! upper && ! lsame_(uplo, "L")) {	*info = -2;    } else if (! notran && ! lsame_(trans, "T")) {	*info = -3;    } else if (*m < 0) {	*info = -4;    } else if (*n < 0) {	*info = -5;    } else if (*ldc < max(1,*m)) {	*info = -9;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DOPMTR", &i__1);	return 0;    }/*     Quick return if possible */    if (*m == 0 || *n == 0) {	return 0;    }    if (upper) {/*        Q was determined by a call to DSPTRD with UPLO = 'U' */	forwrd = left && notran || ! left && ! notran;	if (forwrd) {	    i1 = 1;	    i2 = nq - 1;	    i3 = 1;	    ii = 2;	} else {	    i1 = nq - 1;	    i2 = 1;	    i3 = -1;	    ii = nq * (nq + 1) / 2 - 1;	}	if (left) {	    ni = *n;	} else {	    mi = *m;	}	i__1 = i2;	i__2 = i3;	for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {	    if (left) {/*              H(i) is applied to C(1:i,1:n) */		mi = i__;	    } else {/*              H(i) is applied to C(1:m,1:i) */		ni = i__;	    }/*           Apply H(i) */	    aii = ap[ii];	    ap[ii] = 1.;	    dlarf_(side, &mi, &ni, &ap[ii - i__ + 1], &c__1, &tau[i__], &c__[		    c_offset], ldc, &work[1]);	    ap[ii] = aii;	    if (forwrd) {		ii = ii + i__ + 2;	    } else {		ii = ii - i__ - 1;	    }/* L10: */	}    } else {/*        Q was determined by a call to DSPTRD with UPLO = 'L'. */	forwrd = left && ! notran || ! left && notran;	if (forwrd) {	    i1 = 1;	    i2 = nq - 1;	    i3 = 1;	    ii = 2;	} else {	    i1 = nq - 1;	    i2 = 1;	    i3 = -1;	    ii = nq * (nq + 1) / 2 - 1;	}	if (left) {	    ni = *n;	    jc = 1;	} else {	    mi = *m;	    ic = 1;	}	i__2 = i2;	i__1 = i3;	for (i__ = i1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {	    aii = ap[ii];	    ap[ii] = 1.;	    if (left) {/*              H(i) is applied to C(i+1:m,1:n) */		mi = *m - i__;		ic = i__ + 1;	    } else {/*              H(i) is applied to C(1:m,i+1:n) */		ni = *n - i__;		jc = i__ + 1;	    }/*           Apply H(i) */	    dlarf_(side, &mi, &ni, &ap[ii], &c__1, &tau[i__], &c__[ic + jc * 		    c_dim1], ldc, &work[1]);	    ap[ii] = aii;	    if (forwrd) {		ii = ii + nq - i__ + 1;	    } else {		ii = ii - nq + i__ - 2;	    }/* L20: */	}    }    return 0;/*     End of DOPMTR */} /* dopmtr_ */
 |