| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 | /* dlauu2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b7 = 1.;static integer c__1 = 1;/* Subroutine */ int dlauu2_(char *uplo, integer *n, doublereal *a, integer *	lda, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer i__;    doublereal aii;    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAUU2 computes the product U * U' or L' * L, where the triangular *//*  factor U or L is stored in the upper or lower triangular part of *//*  the array A. *//*  If UPLO = 'U' or 'u' then the upper triangle of the result is stored, *//*  overwriting the factor U in A. *//*  If UPLO = 'L' or 'l' then the lower triangle of the result is stored, *//*  overwriting the factor L in A. *//*  This is the unblocked form of the algorithm, calling Level 2 BLAS. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the triangular factor stored in the array A *//*          is upper or lower triangular: *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the triangular factor U or L.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the triangular factor U or L. *//*          On exit, if UPLO = 'U', the upper triangle of A is *//*          overwritten with the upper triangle of the product U * U'; *//*          if UPLO = 'L', the lower triangle of A is overwritten with *//*          the lower triangle of the product L' * L. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -k, the k-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLAUU2", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (upper) {/*        Compute the product U * U'. */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    aii = a[i__ + i__ * a_dim1];	    if (i__ < *n) {		i__2 = *n - i__ + 1;		a[i__ + i__ * a_dim1] = ddot_(&i__2, &a[i__ + i__ * a_dim1], 			lda, &a[i__ + i__ * a_dim1], lda);		i__2 = i__ - 1;		i__3 = *n - i__;		dgemv_("No transpose", &i__2, &i__3, &c_b7, &a[(i__ + 1) * 			a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &			aii, &a[i__ * a_dim1 + 1], &c__1);	    } else {		dscal_(&i__, &aii, &a[i__ * a_dim1 + 1], &c__1);	    }/* L10: */	}    } else {/*        Compute the product L' * L. */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    aii = a[i__ + i__ * a_dim1];	    if (i__ < *n) {		i__2 = *n - i__ + 1;		a[i__ + i__ * a_dim1] = ddot_(&i__2, &a[i__ + i__ * a_dim1], &			c__1, &a[i__ + i__ * a_dim1], &c__1);		i__2 = *n - i__;		i__3 = i__ - 1;		dgemv_("Transpose", &i__2, &i__3, &c_b7, &a[i__ + 1 + a_dim1], 			 lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &aii, &a[i__ 			+ a_dim1], lda);	    } else {		dscal_(&i__, &aii, &a[i__ + a_dim1], lda);	    }/* L20: */	}    }    return 0;/*     End of DLAUU2 */} /* dlauu2_ */
 |