| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 | /* dlatrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b5 = -1.;static doublereal c_b6 = 1.;static integer c__1 = 1;static doublereal c_b16 = 0.;/* Subroutine */ int dlatrd_(char *uplo, integer *n, integer *nb, doublereal *	a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, 	integer *ldw){    /* System generated locals */    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, iw;    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal alpha;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), daxpy_(integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *), 	    dsymv_(char *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *, 	     doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLATRD reduces NB rows and columns of a real symmetric matrix A to *//*  symmetric tridiagonal form by an orthogonal similarity *//*  transformation Q' * A * Q, and returns the matrices V and W which are *//*  needed to apply the transformation to the unreduced part of A. *//*  If UPLO = 'U', DLATRD reduces the last NB rows and columns of a *//*  matrix, of which the upper triangle is supplied; *//*  if UPLO = 'L', DLATRD reduces the first NB rows and columns of a *//*  matrix, of which the lower triangle is supplied. *//*  This is an auxiliary routine called by DSYTRD. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored: *//*          = 'U': Upper triangular *//*          = 'L': Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrix A. *//*  NB      (input) INTEGER *//*          The number of rows and columns to be reduced. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          n-by-n upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading n-by-n lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit: *//*          if UPLO = 'U', the last NB columns have been reduced to *//*            tridiagonal form, with the diagonal elements overwriting *//*            the diagonal elements of A; the elements above the diagonal *//*            with the array TAU, represent the orthogonal matrix Q as a *//*            product of elementary reflectors; *//*          if UPLO = 'L', the first NB columns have been reduced to *//*            tridiagonal form, with the diagonal elements overwriting *//*            the diagonal elements of A; the elements below the diagonal *//*            with the array TAU, represent the  orthogonal matrix Q as a *//*            product of elementary reflectors. *//*          See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= (1,N). *//*  E       (output) DOUBLE PRECISION array, dimension (N-1) *//*          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal *//*          elements of the last NB columns of the reduced matrix; *//*          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of *//*          the first NB columns of the reduced matrix. *//*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) *//*          The scalar factors of the elementary reflectors, stored in *//*          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. *//*          See Further Details. *//*  W       (output) DOUBLE PRECISION array, dimension (LDW,NB) *//*          The n-by-nb matrix W required to update the unreduced part *//*          of A. *//*  LDW     (input) INTEGER *//*          The leading dimension of the array W. LDW >= max(1,N). *//*  Further Details *//*  =============== *//*  If UPLO = 'U', the matrix Q is represented as a product of elementary *//*  reflectors *//*     Q = H(n) H(n-1) . . . H(n-nb+1). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), *//*  and tau in TAU(i-1). *//*  If UPLO = 'L', the matrix Q is represented as a product of elementary *//*  reflectors *//*     Q = H(1) H(2) . . . H(nb). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), *//*  and tau in TAU(i). *//*  The elements of the vectors v together form the n-by-nb matrix V *//*  which is needed, with W, to apply the transformation to the unreduced *//*  part of the matrix, using a symmetric rank-2k update of the form: *//*  A := A - V*W' - W*V'. *//*  The contents of A on exit are illustrated by the following examples *//*  with n = 5 and nb = 2: *//*  if UPLO = 'U':                       if UPLO = 'L': *//*    (  a   a   a   v4  v5 )              (  d                  ) *//*    (      a   a   v4  v5 )              (  1   d              ) *//*    (          a   1   v5 )              (  v1  1   a          ) *//*    (              d   1  )              (  v1  v2  a   a      ) *//*    (                  d  )              (  v1  v2  a   a   a  ) *//*  where d denotes a diagonal element of the reduced matrix, a denotes *//*  an element of the original matrix that is unchanged, and vi denotes *//*  an element of the vector defining H(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --e;    --tau;    w_dim1 = *ldw;    w_offset = 1 + w_dim1;    w -= w_offset;    /* Function Body */    if (*n <= 0) {	return 0;    }    if (lsame_(uplo, "U")) {/*        Reduce last NB columns of upper triangle */	i__1 = *n - *nb + 1;	for (i__ = *n; i__ >= i__1; --i__) {	    iw = i__ - *n + *nb;	    if (i__ < *n) {/*              Update A(1:i,i) */		i__2 = *n - i__;		dgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * 			a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &			c_b6, &a[i__ * a_dim1 + 1], &c__1);		i__2 = *n - i__;		dgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * 			w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &			c_b6, &a[i__ * a_dim1 + 1], &c__1);	    }	    if (i__ > 1) {/*              Generate elementary reflector H(i) to annihilate *//*              A(1:i-2,i) */		i__2 = i__ - 1;		dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + 			1], &c__1, &tau[i__ - 1]);		e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];		a[i__ - 1 + i__ * a_dim1] = 1.;/*              Compute W(1:i-1,i) */		i__2 = i__ - 1;		dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * 			a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], &			c__1);		if (i__ < *n) {		    i__2 = i__ - 1;		    i__3 = *n - i__;		    dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * 			    w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &			    c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);		    i__2 = i__ - 1;		    i__3 = *n - i__;		    dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *			     a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &			    c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);		    i__2 = i__ - 1;		    i__3 = *n - i__;		    dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * 			    a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &			    c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);		    i__2 = i__ - 1;		    i__3 = *n - i__;		    dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * 			    w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &			    c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);		}		i__2 = i__ - 1;		dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);		i__2 = i__ - 1;		alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w[iw * w_dim1 + 1], 			 &c__1, &a[i__ * a_dim1 + 1], &c__1);		i__2 = i__ - 1;		daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * 			w_dim1 + 1], &c__1);	    }/* L10: */	}    } else {/*        Reduce first NB columns of lower triangle */	i__1 = *nb;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Update A(i:n,i) */	    i__2 = *n - i__ + 1;	    i__3 = i__ - 1;	    dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, 		     &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], &		    c__1);	    i__2 = *n - i__ + 1;	    i__3 = i__ - 1;	    dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw, 		     &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], &		    c__1);	    if (i__ < *n) {/*              Generate elementary reflector H(i) to annihilate *//*              A(i+2:n,i) */		i__2 = *n - i__;/* Computing MIN */		i__3 = i__ + 2;		dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ 			i__ * a_dim1], &c__1, &tau[i__]);		e[i__] = a[i__ + 1 + i__ * a_dim1];		a[i__ + 1 + i__ * a_dim1] = 1.;/*              Compute W(i+1:n,i) */		i__2 = *n - i__;		dsymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[			i__ + 1 + i__ * w_dim1], &c__1);		i__2 = *n - i__;		i__3 = i__ - 1;		dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1], 			 ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[			i__ * w_dim1 + 1], &c__1);		i__2 = *n - i__;		i__3 = i__ - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + 			a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[			i__ + 1 + i__ * w_dim1], &c__1);		i__2 = *n - i__;		i__3 = i__ - 1;		dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1], 			 lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[			i__ * w_dim1 + 1], &c__1);		i__2 = *n - i__;		i__3 = i__ - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + 			w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[			i__ + 1 + i__ * w_dim1], &c__1);		i__2 = *n - i__;		dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);		i__2 = *n - i__;		alpha = tau[i__] * -.5 * ddot_(&i__2, &w[i__ + 1 + i__ * 			w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);		i__2 = *n - i__;		daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[			i__ + 1 + i__ * w_dim1], &c__1);	    }/* L20: */	}    }    return 0;/*     End of DLATRD */} /* dlatrd_ */
 |