| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 | 
							- /* dlasd2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b30 = 0.;
 
- /* Subroutine */ int dlasd2_(integer *nl, integer *nr, integer *sqre, integer 
 
- 	*k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal *
 
- 	beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt, 
 
- 	doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2, 
 
- 	integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *
 
- 	idxq, integer *coltyp, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, 
 
- 	    vt2_dim1, vt2_offset, i__1;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     doublereal c__;
 
-     integer i__, j, m, n;
 
-     doublereal s;
 
-     integer k2;
 
-     doublereal z1;
 
-     integer ct, jp;
 
-     doublereal eps, tau, tol;
 
-     integer psm[4], nlp1, nlp2, idxi, idxj;
 
-     extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *);
 
-     integer ctot[4], idxjp;
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer jprev;
 
-     extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
 
-     extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 
 
- 	    integer *, integer *, integer *), dlacpy_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *), xerbla_(char *, 
 
- 	    integer *);
 
-     doublereal hlftol;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASD2 merges the two sets of singular values together into a single */
 
- /*  sorted set.  Then it tries to deflate the size of the problem. */
 
- /*  There are two ways in which deflation can occur:  when two or more */
 
- /*  singular values are close together or if there is a tiny entry in the */
 
- /*  Z vector.  For each such occurrence the order of the related secular */
 
- /*  equation problem is reduced by one. */
 
- /*  DLASD2 is called from DLASD1. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  NL     (input) INTEGER */
 
- /*         The row dimension of the upper block.  NL >= 1. */
 
- /*  NR     (input) INTEGER */
 
- /*         The row dimension of the lower block.  NR >= 1. */
 
- /*  SQRE   (input) INTEGER */
 
- /*         = 0: the lower block is an NR-by-NR square matrix. */
 
- /*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 
- /*         The bidiagonal matrix has N = NL + NR + 1 rows and */
 
- /*         M = N + SQRE >= N columns. */
 
- /*  K      (output) INTEGER */
 
- /*         Contains the dimension of the non-deflated matrix, */
 
- /*         This is the order of the related secular equation. 1 <= K <=N. */
 
- /*  D      (input/output) DOUBLE PRECISION array, dimension(N) */
 
- /*         On entry D contains the singular values of the two submatrices */
 
- /*         to be combined.  On exit D contains the trailing (N-K) updated */
 
- /*         singular values (those which were deflated) sorted into */
 
- /*         increasing order. */
 
- /*  Z      (output) DOUBLE PRECISION array, dimension(N) */
 
- /*         On exit Z contains the updating row vector in the secular */
 
- /*         equation. */
 
- /*  ALPHA  (input) DOUBLE PRECISION */
 
- /*         Contains the diagonal element associated with the added row. */
 
- /*  BETA   (input) DOUBLE PRECISION */
 
- /*         Contains the off-diagonal element associated with the added */
 
- /*         row. */
 
- /*  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N) */
 
- /*         On entry U contains the left singular vectors of two */
 
- /*         submatrices in the two square blocks with corners at (1,1), */
 
- /*         (NL, NL), and (NL+2, NL+2), (N,N). */
 
- /*         On exit U contains the trailing (N-K) updated left singular */
 
- /*         vectors (those which were deflated) in its last N-K columns. */
 
- /*  LDU    (input) INTEGER */
 
- /*         The leading dimension of the array U.  LDU >= N. */
 
- /*  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M) */
 
- /*         On entry VT' contains the right singular vectors of two */
 
- /*         submatrices in the two square blocks with corners at (1,1), */
 
- /*         (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
 
- /*         On exit VT' contains the trailing (N-K) updated right singular */
 
- /*         vectors (those which were deflated) in its last N-K columns. */
 
- /*         In case SQRE =1, the last row of VT spans the right null */
 
- /*         space. */
 
- /*  LDVT   (input) INTEGER */
 
- /*         The leading dimension of the array VT.  LDVT >= M. */
 
- /*  DSIGMA (output) DOUBLE PRECISION array, dimension (N) */
 
- /*         Contains a copy of the diagonal elements (K-1 singular values */
 
- /*         and one zero) in the secular equation. */
 
- /*  U2     (output) DOUBLE PRECISION array, dimension(LDU2,N) */
 
- /*         Contains a copy of the first K-1 left singular vectors which */
 
- /*         will be used by DLASD3 in a matrix multiply (DGEMM) to solve */
 
- /*         for the new left singular vectors. U2 is arranged into four */
 
- /*         blocks. The first block contains a column with 1 at NL+1 and */
 
- /*         zero everywhere else; the second block contains non-zero */
 
- /*         entries only at and above NL; the third contains non-zero */
 
- /*         entries only below NL+1; and the fourth is dense. */
 
- /*  LDU2   (input) INTEGER */
 
- /*         The leading dimension of the array U2.  LDU2 >= N. */
 
- /*  VT2    (output) DOUBLE PRECISION array, dimension(LDVT2,N) */
 
- /*         VT2' contains a copy of the first K right singular vectors */
 
- /*         which will be used by DLASD3 in a matrix multiply (DGEMM) to */
 
- /*         solve for the new right singular vectors. VT2 is arranged into */
 
- /*         three blocks. The first block contains a row that corresponds */
 
- /*         to the special 0 diagonal element in SIGMA; the second block */
 
- /*         contains non-zeros only at and before NL +1; the third block */
 
- /*         contains non-zeros only at and after  NL +2. */
 
- /*  LDVT2  (input) INTEGER */
 
- /*         The leading dimension of the array VT2.  LDVT2 >= M. */
 
- /*  IDXP   (workspace) INTEGER array dimension(N) */
 
- /*         This will contain the permutation used to place deflated */
 
- /*         values of D at the end of the array. On output IDXP(2:K) */
 
- /*         points to the nondeflated D-values and IDXP(K+1:N) */
 
- /*         points to the deflated singular values. */
 
- /*  IDX    (workspace) INTEGER array dimension(N) */
 
- /*         This will contain the permutation used to sort the contents of */
 
- /*         D into ascending order. */
 
- /*  IDXC   (output) INTEGER array dimension(N) */
 
- /*         This will contain the permutation used to arrange the columns */
 
- /*         of the deflated U matrix into three groups:  the first group */
 
- /*         contains non-zero entries only at and above NL, the second */
 
- /*         contains non-zero entries only below NL+2, and the third is */
 
- /*         dense. */
 
- /*  IDXQ   (input/output) INTEGER array dimension(N) */
 
- /*         This contains the permutation which separately sorts the two */
 
- /*         sub-problems in D into ascending order.  Note that entries in */
 
- /*         the first hlaf of this permutation must first be moved one */
 
- /*         position backward; and entries in the second half */
 
- /*         must first have NL+1 added to their values. */
 
- /*  COLTYP (workspace/output) INTEGER array dimension(N) */
 
- /*         As workspace, this will contain a label which will indicate */
 
- /*         which of the following types a column in the U2 matrix or a */
 
- /*         row in the VT2 matrix is: */
 
- /*         1 : non-zero in the upper half only */
 
- /*         2 : non-zero in the lower half only */
 
- /*         3 : dense */
 
- /*         4 : deflated */
 
- /*         On exit, it is an array of dimension 4, with COLTYP(I) being */
 
- /*         the dimension of the I-th type columns. */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --z__;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     vt_dim1 = *ldvt;
 
-     vt_offset = 1 + vt_dim1;
 
-     vt -= vt_offset;
 
-     --dsigma;
 
-     u2_dim1 = *ldu2;
 
-     u2_offset = 1 + u2_dim1;
 
-     u2 -= u2_offset;
 
-     vt2_dim1 = *ldvt2;
 
-     vt2_offset = 1 + vt2_dim1;
 
-     vt2 -= vt2_offset;
 
-     --idxp;
 
-     --idx;
 
-     --idxc;
 
-     --idxq;
 
-     --coltyp;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*nl < 1) {
 
- 	*info = -1;
 
-     } else if (*nr < 1) {
 
- 	*info = -2;
 
-     } else if (*sqre != 1 && *sqre != 0) {
 
- 	*info = -3;
 
-     }
 
-     n = *nl + *nr + 1;
 
-     m = n + *sqre;
 
-     if (*ldu < n) {
 
- 	*info = -10;
 
-     } else if (*ldvt < m) {
 
- 	*info = -12;
 
-     } else if (*ldu2 < n) {
 
- 	*info = -15;
 
-     } else if (*ldvt2 < m) {
 
- 	*info = -17;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLASD2", &i__1);
 
- 	return 0;
 
-     }
 
-     nlp1 = *nl + 1;
 
-     nlp2 = *nl + 2;
 
- /*     Generate the first part of the vector Z; and move the singular */
 
- /*     values in the first part of D one position backward. */
 
-     z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
 
-     z__[1] = z1;
 
-     for (i__ = *nl; i__ >= 1; --i__) {
 
- 	z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
 
- 	d__[i__ + 1] = d__[i__];
 
- 	idxq[i__ + 1] = idxq[i__] + 1;
 
- /* L10: */
 
-     }
 
- /*     Generate the second part of the vector Z. */
 
-     i__1 = m;
 
-     for (i__ = nlp2; i__ <= i__1; ++i__) {
 
- 	z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
 
- /* L20: */
 
-     }
 
- /*     Initialize some reference arrays. */
 
-     i__1 = nlp1;
 
-     for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	coltyp[i__] = 1;
 
- /* L30: */
 
-     }
 
-     i__1 = n;
 
-     for (i__ = nlp2; i__ <= i__1; ++i__) {
 
- 	coltyp[i__] = 2;
 
- /* L40: */
 
-     }
 
- /*     Sort the singular values into increasing order */
 
-     i__1 = n;
 
-     for (i__ = nlp2; i__ <= i__1; ++i__) {
 
- 	idxq[i__] += nlp1;
 
- /* L50: */
 
-     }
 
- /*     DSIGMA, IDXC, IDXC, and the first column of U2 */
 
- /*     are used as storage space. */
 
-     i__1 = n;
 
-     for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	dsigma[i__] = d__[idxq[i__]];
 
- 	u2[i__ + u2_dim1] = z__[idxq[i__]];
 
- 	idxc[i__] = coltyp[idxq[i__]];
 
- /* L60: */
 
-     }
 
-     dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
 
-     i__1 = n;
 
-     for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	idxi = idx[i__] + 1;
 
- 	d__[i__] = dsigma[idxi];
 
- 	z__[i__] = u2[idxi + u2_dim1];
 
- 	coltyp[i__] = idxc[idxi];
 
- /* L70: */
 
-     }
 
- /*     Calculate the allowable deflation tolerance */
 
-     eps = dlamch_("Epsilon");
 
- /* Computing MAX */
 
-     d__1 = abs(*alpha), d__2 = abs(*beta);
 
-     tol = max(d__1,d__2);
 
- /* Computing MAX */
 
-     d__2 = (d__1 = d__[n], abs(d__1));
 
-     tol = eps * 8. * max(d__2,tol);
 
- /*     There are 2 kinds of deflation -- first a value in the z-vector */
 
- /*     is small, second two (or more) singular values are very close */
 
- /*     together (their difference is small). */
 
- /*     If the value in the z-vector is small, we simply permute the */
 
- /*     array so that the corresponding singular value is moved to the */
 
- /*     end. */
 
- /*     If two values in the D-vector are close, we perform a two-sided */
 
- /*     rotation designed to make one of the corresponding z-vector */
 
- /*     entries zero, and then permute the array so that the deflated */
 
- /*     singular value is moved to the end. */
 
- /*     If there are multiple singular values then the problem deflates. */
 
- /*     Here the number of equal singular values are found.  As each equal */
 
- /*     singular value is found, an elementary reflector is computed to */
 
- /*     rotate the corresponding singular subspace so that the */
 
- /*     corresponding components of Z are zero in this new basis. */
 
-     *k = 1;
 
-     k2 = n + 1;
 
-     i__1 = n;
 
-     for (j = 2; j <= i__1; ++j) {
 
- 	if ((d__1 = z__[j], abs(d__1)) <= tol) {
 
- /*           Deflate due to small z component. */
 
- 	    --k2;
 
- 	    idxp[k2] = j;
 
- 	    coltyp[j] = 4;
 
- 	    if (j == n) {
 
- 		goto L120;
 
- 	    }
 
- 	} else {
 
- 	    jprev = j;
 
- 	    goto L90;
 
- 	}
 
- /* L80: */
 
-     }
 
- L90:
 
-     j = jprev;
 
- L100:
 
-     ++j;
 
-     if (j > n) {
 
- 	goto L110;
 
-     }
 
-     if ((d__1 = z__[j], abs(d__1)) <= tol) {
 
- /*        Deflate due to small z component. */
 
- 	--k2;
 
- 	idxp[k2] = j;
 
- 	coltyp[j] = 4;
 
-     } else {
 
- /*        Check if singular values are close enough to allow deflation. */
 
- 	if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
 
- /*           Deflation is possible. */
 
- 	    s = z__[jprev];
 
- 	    c__ = z__[j];
 
- /*           Find sqrt(a**2+b**2) without overflow or */
 
- /*           destructive underflow. */
 
- 	    tau = dlapy2_(&c__, &s);
 
- 	    c__ /= tau;
 
- 	    s = -s / tau;
 
- 	    z__[j] = tau;
 
- 	    z__[jprev] = 0.;
 
- /*           Apply back the Givens rotation to the left and right */
 
- /*           singular vector matrices. */
 
- 	    idxjp = idxq[idx[jprev] + 1];
 
- 	    idxj = idxq[idx[j] + 1];
 
- 	    if (idxjp <= nlp1) {
 
- 		--idxjp;
 
- 	    }
 
- 	    if (idxj <= nlp1) {
 
- 		--idxj;
 
- 	    }
 
- 	    drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
 
- 		    c__1, &c__, &s);
 
- 	    drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
 
- 		    c__, &s);
 
- 	    if (coltyp[j] != coltyp[jprev]) {
 
- 		coltyp[j] = 3;
 
- 	    }
 
- 	    coltyp[jprev] = 4;
 
- 	    --k2;
 
- 	    idxp[k2] = jprev;
 
- 	    jprev = j;
 
- 	} else {
 
- 	    ++(*k);
 
- 	    u2[*k + u2_dim1] = z__[jprev];
 
- 	    dsigma[*k] = d__[jprev];
 
- 	    idxp[*k] = jprev;
 
- 	    jprev = j;
 
- 	}
 
-     }
 
-     goto L100;
 
- L110:
 
- /*     Record the last singular value. */
 
-     ++(*k);
 
-     u2[*k + u2_dim1] = z__[jprev];
 
-     dsigma[*k] = d__[jprev];
 
-     idxp[*k] = jprev;
 
- L120:
 
- /*     Count up the total number of the various types of columns, then */
 
- /*     form a permutation which positions the four column types into */
 
- /*     four groups of uniform structure (although one or more of these */
 
- /*     groups may be empty). */
 
-     for (j = 1; j <= 4; ++j) {
 
- 	ctot[j - 1] = 0;
 
- /* L130: */
 
-     }
 
-     i__1 = n;
 
-     for (j = 2; j <= i__1; ++j) {
 
- 	ct = coltyp[j];
 
- 	++ctot[ct - 1];
 
- /* L140: */
 
-     }
 
- /*     PSM(*) = Position in SubMatrix (of types 1 through 4) */
 
-     psm[0] = 2;
 
-     psm[1] = ctot[0] + 2;
 
-     psm[2] = psm[1] + ctot[1];
 
-     psm[3] = psm[2] + ctot[2];
 
- /*     Fill out the IDXC array so that the permutation which it induces */
 
- /*     will place all type-1 columns first, all type-2 columns next, */
 
- /*     then all type-3's, and finally all type-4's, starting from the */
 
- /*     second column. This applies similarly to the rows of VT. */
 
-     i__1 = n;
 
-     for (j = 2; j <= i__1; ++j) {
 
- 	jp = idxp[j];
 
- 	ct = coltyp[jp];
 
- 	idxc[psm[ct - 1]] = j;
 
- 	++psm[ct - 1];
 
- /* L150: */
 
-     }
 
- /*     Sort the singular values and corresponding singular vectors into */
 
- /*     DSIGMA, U2, and VT2 respectively.  The singular values/vectors */
 
- /*     which were not deflated go into the first K slots of DSIGMA, U2, */
 
- /*     and VT2 respectively, while those which were deflated go into the */
 
- /*     last N - K slots, except that the first column/row will be treated */
 
- /*     separately. */
 
-     i__1 = n;
 
-     for (j = 2; j <= i__1; ++j) {
 
- 	jp = idxp[j];
 
- 	dsigma[j] = d__[jp];
 
- 	idxj = idxq[idx[idxp[idxc[j]]] + 1];
 
- 	if (idxj <= nlp1) {
 
- 	    --idxj;
 
- 	}
 
- 	dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
 
- 	dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
 
- /* L160: */
 
-     }
 
- /*     Determine DSIGMA(1), DSIGMA(2) and Z(1) */
 
-     dsigma[1] = 0.;
 
-     hlftol = tol / 2.;
 
-     if (abs(dsigma[2]) <= hlftol) {
 
- 	dsigma[2] = hlftol;
 
-     }
 
-     if (m > n) {
 
- 	z__[1] = dlapy2_(&z1, &z__[m]);
 
- 	if (z__[1] <= tol) {
 
- 	    c__ = 1.;
 
- 	    s = 0.;
 
- 	    z__[1] = tol;
 
- 	} else {
 
- 	    c__ = z1 / z__[1];
 
- 	    s = z__[m] / z__[1];
 
- 	}
 
-     } else {
 
- 	if (abs(z1) <= tol) {
 
- 	    z__[1] = tol;
 
- 	} else {
 
- 	    z__[1] = z1;
 
- 	}
 
-     }
 
- /*     Move the rest of the updating row to Z. */
 
-     i__1 = *k - 1;
 
-     dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
 
- /*     Determine the first column of U2, the first row of VT2 and the */
 
- /*     last row of VT. */
 
-     dlaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
 
-     u2[nlp1 + u2_dim1] = 1.;
 
-     if (m > n) {
 
- 	i__1 = nlp1;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
 
- 	    vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
 
- /* L170: */
 
- 	}
 
- 	i__1 = m;
 
- 	for (i__ = nlp2; i__ <= i__1; ++i__) {
 
- 	    vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
 
- 	    vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
 
- /* L180: */
 
- 	}
 
-     } else {
 
- 	dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
 
-     }
 
-     if (m > n) {
 
- 	dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
 
-     }
 
- /*     The deflated singular values and their corresponding vectors go */
 
- /*     into the back of D, U, and V respectively. */
 
-     if (n > *k) {
 
- 	i__1 = n - *k;
 
- 	dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
 
- 	i__1 = n - *k;
 
- 	dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
 
- 		 * u_dim1 + 1], ldu);
 
- 	i__1 = n - *k;
 
- 	dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 + 
 
- 		vt_dim1], ldvt);
 
-     }
 
- /*     Copy CTOT into COLTYP for referencing in DLASD3. */
 
-     for (j = 1; j <= 4; ++j) {
 
- 	coltyp[j] = ctot[j - 1];
 
- /* L190: */
 
-     }
 
-     return 0;
 
- /*     End of DLASD2 */
 
- } /* dlasd2_ */
 
 
  |