| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 | /* dlasd0.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__0 = 0;static integer c__2 = 2;/* Subroutine */ int dlasd0_(integer *n, integer *sqre, doublereal *d__, 	doublereal *e, doublereal *u, integer *ldu, doublereal *vt, integer *	ldvt, integer *smlsiz, integer *iwork, doublereal *work, integer *	info){    /* System generated locals */    integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;    /* Builtin functions */    integer pow_ii(integer *, integer *);    /* Local variables */    integer i__, j, m, i1, ic, lf, nd, ll, nl, nr, im1, ncc, nlf, nrf, iwk, 	    lvl, ndb1, nlp1, nrp1;    doublereal beta;    integer idxq, nlvl;    doublereal alpha;    integer inode, ndiml, idxqc, ndimr, itemp, sqrei;    extern /* Subroutine */ int dlasd1_(integer *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, integer *, integer *, integer *, doublereal *, 	    integer *), dlasdq_(char *, integer *, integer *, integer *, 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *), dlasdt_(integer *, integer *, 	    integer *, integer *, integer *, integer *, integer *), xerbla_(	    char *, integer *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  Using a divide and conquer approach, DLASD0 computes the singular *//*  value decomposition (SVD) of a real upper bidiagonal N-by-M *//*  matrix B with diagonal D and offdiagonal E, where M = N + SQRE. *//*  The algorithm computes orthogonal matrices U and VT such that *//*  B = U * S * VT. The singular values S are overwritten on D. *//*  A related subroutine, DLASDA, computes only the singular values, *//*  and optionally, the singular vectors in compact form. *//*  Arguments *//*  ========= *//*  N      (input) INTEGER *//*         On entry, the row dimension of the upper bidiagonal matrix. *//*         This is also the dimension of the main diagonal array D. *//*  SQRE   (input) INTEGER *//*         Specifies the column dimension of the bidiagonal matrix. *//*         = 0: The bidiagonal matrix has column dimension M = N; *//*         = 1: The bidiagonal matrix has column dimension M = N+1; *//*  D      (input/output) DOUBLE PRECISION array, dimension (N) *//*         On entry D contains the main diagonal of the bidiagonal *//*         matrix. *//*         On exit D, if INFO = 0, contains its singular values. *//*  E      (input) DOUBLE PRECISION array, dimension (M-1) *//*         Contains the subdiagonal entries of the bidiagonal matrix. *//*         On exit, E has been destroyed. *//*  U      (output) DOUBLE PRECISION array, dimension at least (LDQ, N) *//*         On exit, U contains the left singular vectors. *//*  LDU    (input) INTEGER *//*         On entry, leading dimension of U. *//*  VT     (output) DOUBLE PRECISION array, dimension at least (LDVT, M) *//*         On exit, VT' contains the right singular vectors. *//*  LDVT   (input) INTEGER *//*         On entry, leading dimension of VT. *//*  SMLSIZ (input) INTEGER *//*         On entry, maximum size of the subproblems at the *//*         bottom of the computation tree. *//*  IWORK  (workspace) INTEGER work array. *//*         Dimension must be at least (8 * N) *//*  WORK   (workspace) DOUBLE PRECISION work array. *//*         Dimension must be at least (3 * M**2 + 2 * M) *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an singular value did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    vt_dim1 = *ldvt;    vt_offset = 1 + vt_dim1;    vt -= vt_offset;    --iwork;    --work;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*sqre < 0 || *sqre > 1) {	*info = -2;    }    m = *n + *sqre;    if (*ldu < *n) {	*info = -6;    } else if (*ldvt < m) {	*info = -8;    } else if (*smlsiz < 3) {	*info = -9;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLASD0", &i__1);	return 0;    }/*     If the input matrix is too small, call DLASDQ to find the SVD. */    if (*n <= *smlsiz) {	dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset], 		ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info);	return 0;    }/*     Set up the computation tree. */    inode = 1;    ndiml = inode + *n;    ndimr = ndiml + *n;    idxq = ndimr + *n;    iwk = idxq + *n;    dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 	    smlsiz);/*     For the nodes on bottom level of the tree, solve *//*     their subproblems by DLASDQ. */    ndb1 = (nd + 1) / 2;    ncc = 0;    i__1 = nd;    for (i__ = ndb1; i__ <= i__1; ++i__) {/*     IC : center row of each node *//*     NL : number of rows of left  subproblem *//*     NR : number of rows of right subproblem *//*     NLF: starting row of the left   subproblem *//*     NRF: starting row of the right  subproblem */	i1 = i__ - 1;	ic = iwork[inode + i1];	nl = iwork[ndiml + i1];	nlp1 = nl + 1;	nr = iwork[ndimr + i1];	nrp1 = nr + 1;	nlf = ic - nl;	nrf = ic + 1;	sqrei = 1;	dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &vt[		nlf + nlf * vt_dim1], ldvt, &u[nlf + nlf * u_dim1], ldu, &u[		nlf + nlf * u_dim1], ldu, &work[1], info);	if (*info != 0) {	    return 0;	}	itemp = idxq + nlf - 2;	i__2 = nl;	for (j = 1; j <= i__2; ++j) {	    iwork[itemp + j] = j;/* L10: */	}	if (i__ == nd) {	    sqrei = *sqre;	} else {	    sqrei = 1;	}	nrp1 = nr + sqrei;	dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &vt[		nrf + nrf * vt_dim1], ldvt, &u[nrf + nrf * u_dim1], ldu, &u[		nrf + nrf * u_dim1], ldu, &work[1], info);	if (*info != 0) {	    return 0;	}	itemp = idxq + ic;	i__2 = nr;	for (j = 1; j <= i__2; ++j) {	    iwork[itemp + j - 1] = j;/* L20: */	}/* L30: */    }/*     Now conquer each subproblem bottom-up. */    for (lvl = nlvl; lvl >= 1; --lvl) {/*        Find the first node LF and last node LL on the *//*        current level LVL. */	if (lvl == 1) {	    lf = 1;	    ll = 1;	} else {	    i__1 = lvl - 1;	    lf = pow_ii(&c__2, &i__1);	    ll = (lf << 1) - 1;	}	i__1 = ll;	for (i__ = lf; i__ <= i__1; ++i__) {	    im1 = i__ - 1;	    ic = iwork[inode + im1];	    nl = iwork[ndiml + im1];	    nr = iwork[ndimr + im1];	    nlf = ic - nl;	    if (*sqre == 0 && i__ == ll) {		sqrei = *sqre;	    } else {		sqrei = 1;	    }	    idxqc = idxq + nlf - 1;	    alpha = d__[ic];	    beta = e[ic];	    dlasd1_(&nl, &nr, &sqrei, &d__[nlf], &alpha, &beta, &u[nlf + nlf *		     u_dim1], ldu, &vt[nlf + nlf * vt_dim1], ldvt, &iwork[		    idxqc], &iwork[iwk], &work[1], info);	    if (*info != 0) {		return 0;	    }/* L40: */	}/* L50: */    }    return 0;/*     End of DLASD0 */} /* dlasd0_ */
 |