| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862 | /* dlarre.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__2 = 2;/* Subroutine */ int dlarre_(char *range, integer *n, doublereal *vl, 	doublereal *vu, integer *il, integer *iu, doublereal *d__, doublereal 	*e, doublereal *e2, doublereal *rtol1, doublereal *rtol2, doublereal *	spltol, integer *nsplit, integer *isplit, integer *m, doublereal *w, 	doublereal *werr, doublereal *wgap, integer *iblock, integer *indexw, 	doublereal *gers, doublereal *pivmin, doublereal *work, integer *	iwork, integer *info){    /* System generated locals */    integer i__1, i__2;    doublereal d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal), log(doublereal);    /* Local variables */    integer i__, j;    doublereal s1, s2;    integer mb;    doublereal gl;    integer in, mm;    doublereal gu;    integer cnt;    doublereal eps, tau, tmp, rtl;    integer cnt1, cnt2;    doublereal tmp1, eabs;    integer iend, jblk;    doublereal eold;    integer indl;    doublereal dmax__, emax;    integer wend, idum, indu;    doublereal rtol;    integer iseed[4];    doublereal avgap, sigma;    extern logical lsame_(char *, char *);    integer iinfo;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    logical norep;    extern /* Subroutine */ int dlasq2_(integer *, doublereal *, integer *);    extern doublereal dlamch_(char *);    integer ibegin;    logical forceb;    integer irange;    doublereal sgndef;    extern /* Subroutine */ int dlarra_(integer *, doublereal *, doublereal *, 	     doublereal *, doublereal *, doublereal *, integer *, integer *, 	    integer *), dlarrb_(integer *, doublereal *, doublereal *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, doublereal *, integer *, integer *), dlarrc_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal 	    *, doublereal *, integer *, integer *, integer *, integer *);    integer wbegin;    extern /* Subroutine */ int dlarrd_(char *, char *, integer *, doublereal 	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 	     doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);    doublereal safmin, spdiam;    extern /* Subroutine */ int dlarrk_(integer *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *);    logical usedqd;    doublereal clwdth, isleft;    extern /* Subroutine */ int dlarnv_(integer *, integer *, integer *, 	    doublereal *);    doublereal isrght, bsrtol, dpivot;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  To find the desired eigenvalues of a given real symmetric *//*  tridiagonal matrix T, DLARRE sets any "small" off-diagonal *//*  elements to zero, and for each unreduced block T_i, it finds *//*  (a) a suitable shift at one end of the block's spectrum, *//*  (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and *//*  (c) eigenvalues of each L_i D_i L_i^T. *//*  The representations and eigenvalues found are then used by *//*  DSTEMR to compute the eigenvectors of T. *//*  The accuracy varies depending on whether bisection is used to *//*  find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to *//*  conpute all and then discard any unwanted one. *//*  As an added benefit, DLARRE also outputs the n *//*  Gerschgorin intervals for the matrices L_i D_i L_i^T. *//*  Arguments *//*  ========= *//*  RANGE   (input) CHARACTER *//*          = 'A': ("All")   all eigenvalues will be found. *//*          = 'V': ("Value") all eigenvalues in the half-open interval *//*                           (VL, VU] will be found. *//*          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the *//*                           entire matrix) will be found. *//*  N       (input) INTEGER *//*          The order of the matrix. N > 0. *//*  VL      (input/output) DOUBLE PRECISION *//*  VU      (input/output) DOUBLE PRECISION *//*          If RANGE='V', the lower and upper bounds for the eigenvalues. *//*          Eigenvalues less than or equal to VL, or greater than VU, *//*          will not be returned.  VL < VU. *//*          If RANGE='I' or ='A', DLARRE computes bounds on the desired *//*          part of the spectrum. *//*  IL      (input) INTEGER *//*  IU      (input) INTEGER *//*          If RANGE='I', the indices (in ascending order) of the *//*          smallest and largest eigenvalues to be returned. *//*          1 <= IL <= IU <= N. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the N diagonal elements of the tridiagonal *//*          matrix T. *//*          On exit, the N diagonal elements of the diagonal *//*          matrices D_i. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the first (N-1) entries contain the subdiagonal *//*          elements of the tridiagonal matrix T; E(N) need not be set. *//*          On exit, E contains the subdiagonal elements of the unit *//*          bidiagonal matrices L_i. The entries E( ISPLIT( I ) ), *//*          1 <= I <= NSPLIT, contain the base points sigma_i on output. *//*  E2      (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the first (N-1) entries contain the SQUARES of the *//*          subdiagonal elements of the tridiagonal matrix T; *//*          E2(N) need not be set. *//*          On exit, the entries E2( ISPLIT( I ) ), *//*          1 <= I <= NSPLIT, have been set to zero *//*  RTOL1   (input) DOUBLE PRECISION *//*  RTOL2   (input) DOUBLE PRECISION *//*           Parameters for bisection. *//*           An interval [LEFT,RIGHT] has converged if *//*           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) *//*  SPLTOL (input) DOUBLE PRECISION *//*          The threshold for splitting. *//*  NSPLIT  (output) INTEGER *//*          The number of blocks T splits into. 1 <= NSPLIT <= N. *//*  ISPLIT  (output) INTEGER array, dimension (N) *//*          The splitting points, at which T breaks up into blocks. *//*          The first block consists of rows/columns 1 to ISPLIT(1), *//*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), *//*          etc., and the NSPLIT-th consists of rows/columns *//*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. *//*  M       (output) INTEGER *//*          The total number of eigenvalues (of all L_i D_i L_i^T) *//*          found. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          The first M elements contain the eigenvalues. The *//*          eigenvalues of each of the blocks, L_i D_i L_i^T, are *//*          sorted in ascending order ( DLARRE may use the *//*          remaining N-M elements as workspace). *//*  WERR    (output) DOUBLE PRECISION array, dimension (N) *//*          The error bound on the corresponding eigenvalue in W. *//*  WGAP    (output) DOUBLE PRECISION array, dimension (N) *//*          The separation from the right neighbor eigenvalue in W. *//*          The gap is only with respect to the eigenvalues of the same block *//*          as each block has its own representation tree. *//*          Exception: at the right end of a block we store the left gap *//*  IBLOCK  (output) INTEGER array, dimension (N) *//*          The indices of the blocks (submatrices) associated with the *//*          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue *//*          W(i) belongs to the first block from the top, =2 if W(i) *//*          belongs to the second block, etc. *//*  INDEXW  (output) INTEGER array, dimension (N) *//*          The indices of the eigenvalues within each block (submatrix); *//*          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the *//*          i-th eigenvalue W(i) is the 10-th eigenvalue in block 2 *//*  GERS    (output) DOUBLE PRECISION array, dimension (2*N) *//*          The N Gerschgorin intervals (the i-th Gerschgorin interval *//*          is (GERS(2*i-1), GERS(2*i)). *//*  PIVMIN  (output) DOUBLE PRECISION *//*          The minimum pivot in the Sturm sequence for T. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (6*N) *//*          Workspace. *//*  IWORK   (workspace) INTEGER array, dimension (5*N) *//*          Workspace. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          > 0:  A problem occured in DLARRE. *//*          < 0:  One of the called subroutines signaled an internal problem. *//*                Needs inspection of the corresponding parameter IINFO *//*                for further information. *//*          =-1:  Problem in DLARRD. *//*          = 2:  No base representation could be found in MAXTRY iterations. *//*                Increasing MAXTRY and recompilation might be a remedy. *//*          =-3:  Problem in DLARRB when computing the refined root *//*                representation for DLASQ2. *//*          =-4:  Problem in DLARRB when preforming bisection on the *//*                desired part of the spectrum. *//*          =-5:  Problem in DLASQ2. *//*          =-6:  Problem in DLASQ2. *//*  Further Details *//*  The base representations are required to suffer very little *//*  element growth and consequently define all their eigenvalues to *//*  high relative accuracy. *//*  =============== *//*  Based on contributions by *//*     Beresford Parlett, University of California, Berkeley, USA *//*     Jim Demmel, University of California, Berkeley, USA *//*     Inderjit Dhillon, University of Texas, Austin, USA *//*     Osni Marques, LBNL/NERSC, USA *//*     Christof Voemel, University of California, Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --iwork;    --work;    --gers;    --indexw;    --iblock;    --wgap;    --werr;    --w;    --isplit;    --e2;    --e;    --d__;    /* Function Body */    *info = 0;/*     Decode RANGE */    if (lsame_(range, "A")) {	irange = 1;    } else if (lsame_(range, "V")) {	irange = 3;    } else if (lsame_(range, "I")) {	irange = 2;    }    *m = 0;/*     Get machine constants */    safmin = dlamch_("S");    eps = dlamch_("P");/*     Set parameters */    rtl = sqrt(eps);    bsrtol = sqrt(eps);/*     Treat case of 1x1 matrix for quick return */    if (*n == 1) {	if (irange == 1 || irange == 3 && d__[1] > *vl && d__[1] <= *vu || 		irange == 2 && *il == 1 && *iu == 1) {	    *m = 1;	    w[1] = d__[1];/*           The computation error of the eigenvalue is zero */	    werr[1] = 0.;	    wgap[1] = 0.;	    iblock[1] = 1;	    indexw[1] = 1;	    gers[1] = d__[1];	    gers[2] = d__[1];	}/*        store the shift for the initial RRR, which is zero in this case */	e[1] = 0.;	return 0;    }/*     General case: tridiagonal matrix of order > 1 *//*     Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter. *//*     Compute maximum off-diagonal entry and pivmin. */    gl = d__[1];    gu = d__[1];    eold = 0.;    emax = 0.;    e[*n] = 0.;    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	werr[i__] = 0.;	wgap[i__] = 0.;	eabs = (d__1 = e[i__], abs(d__1));	if (eabs >= emax) {	    emax = eabs;	}	tmp1 = eabs + eold;	gers[(i__ << 1) - 1] = d__[i__] - tmp1;/* Computing MIN */	d__1 = gl, d__2 = gers[(i__ << 1) - 1];	gl = min(d__1,d__2);	gers[i__ * 2] = d__[i__] + tmp1;/* Computing MAX */	d__1 = gu, d__2 = gers[i__ * 2];	gu = max(d__1,d__2);	eold = eabs;/* L5: */    }/*     The minimum pivot allowed in the Sturm sequence for T *//* Computing MAX *//* Computing 2nd power */    d__3 = emax;    d__1 = 1., d__2 = d__3 * d__3;    *pivmin = safmin * max(d__1,d__2);/*     Compute spectral diameter. The Gerschgorin bounds give an *//*     estimate that is wrong by at most a factor of SQRT(2) */    spdiam = gu - gl;/*     Compute splitting points */    dlarra_(n, &d__[1], &e[1], &e2[1], spltol, &spdiam, nsplit, &isplit[1], &	    iinfo);/*     Can force use of bisection instead of faster DQDS. *//*     Option left in the code for future multisection work. */    forceb = FALSE_;/*     Initialize USEDQD, DQDS should be used for ALLRNG unless someone *//*     explicitly wants bisection. */    usedqd = irange == 1 && ! forceb;    if (irange == 1 && ! forceb) {/*        Set interval [VL,VU] that contains all eigenvalues */	*vl = gl;	*vu = gu;    } else {/*        We call DLARRD to find crude approximations to the eigenvalues *//*        in the desired range. In case IRANGE = INDRNG, we also obtain the *//*        interval (VL,VU] that contains all the wanted eigenvalues. *//*        An interval [LEFT,RIGHT] has converged if *//*        RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT)) *//*        DLARRD needs a WORK of size 4*N, IWORK of size 3*N */	dlarrd_(range, "B", n, vl, vu, il, iu, &gers[1], &bsrtol, &d__[1], &e[		1], &e2[1], pivmin, nsplit, &isplit[1], &mm, &w[1], &werr[1], 		vl, vu, &iblock[1], &indexw[1], &work[1], &iwork[1], &iinfo);	if (iinfo != 0) {	    *info = -1;	    return 0;	}/*        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 */	i__1 = *n;	for (i__ = mm + 1; i__ <= i__1; ++i__) {	    w[i__] = 0.;	    werr[i__] = 0.;	    iblock[i__] = 0;	    indexw[i__] = 0;/* L14: */	}    }/* ** *//*     Loop over unreduced blocks */    ibegin = 1;    wbegin = 1;    i__1 = *nsplit;    for (jblk = 1; jblk <= i__1; ++jblk) {	iend = isplit[jblk];	in = iend - ibegin + 1;/*        1 X 1 block */	if (in == 1) {	    if (irange == 1 || irange == 3 && d__[ibegin] > *vl && d__[ibegin]		     <= *vu || irange == 2 && iblock[wbegin] == jblk) {		++(*m);		w[*m] = d__[ibegin];		werr[*m] = 0.;/*              The gap for a single block doesn't matter for the later *//*              algorithm and is assigned an arbitrary large value */		wgap[*m] = 0.;		iblock[*m] = jblk;		indexw[*m] = 1;		++wbegin;	    }/*           E( IEND ) holds the shift for the initial RRR */	    e[iend] = 0.;	    ibegin = iend + 1;	    goto L170;	}/*        Blocks of size larger than 1x1 *//*        E( IEND ) will hold the shift for the initial RRR, for now set it =0 */	e[iend] = 0.;/*        Find local outer bounds GL,GU for the block */	gl = d__[ibegin];	gu = d__[ibegin];	i__2 = iend;	for (i__ = ibegin; i__ <= i__2; ++i__) {/* Computing MIN */	    d__1 = gers[(i__ << 1) - 1];	    gl = min(d__1,gl);/* Computing MAX */	    d__1 = gers[i__ * 2];	    gu = max(d__1,gu);/* L15: */	}	spdiam = gu - gl;	if (! (irange == 1 && ! forceb)) {/*           Count the number of eigenvalues in the current block. */	    mb = 0;	    i__2 = mm;	    for (i__ = wbegin; i__ <= i__2; ++i__) {		if (iblock[i__] == jblk) {		    ++mb;		} else {		    goto L21;		}/* L20: */	    }L21:	    if (mb == 0) {/*              No eigenvalue in the current block lies in the desired range *//*              E( IEND ) holds the shift for the initial RRR */		e[iend] = 0.;		ibegin = iend + 1;		goto L170;	    } else {/*              Decide whether dqds or bisection is more efficient */		usedqd = (doublereal) mb > in * .5 && ! forceb;		wend = wbegin + mb - 1;/*              Calculate gaps for the current block *//*              In later stages, when representations for individual *//*              eigenvalues are different, we use SIGMA = E( IEND ). */		sigma = 0.;		i__2 = wend - 1;		for (i__ = wbegin; i__ <= i__2; ++i__) {/* Computing MAX */		    d__1 = 0., d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + 			    werr[i__]);		    wgap[i__] = max(d__1,d__2);/* L30: */		}/* Computing MAX */		d__1 = 0., d__2 = *vu - sigma - (w[wend] + werr[wend]);		wgap[wend] = max(d__1,d__2);/*              Find local index of the first and last desired evalue. */		indl = indexw[wbegin];		indu = indexw[wend];	    }	}	if (irange == 1 && ! forceb || usedqd) {/*           Case of DQDS *//*           Find approximations to the extremal eigenvalues of the block */	    dlarrk_(&in, &c__1, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &		    rtl, &tmp, &tmp1, &iinfo);	    if (iinfo != 0) {		*info = -1;		return 0;	    }/* Computing MAX */	    d__2 = gl, d__3 = tmp - tmp1 - eps * 100. * (d__1 = tmp - tmp1, 		    abs(d__1));	    isleft = max(d__2,d__3);	    dlarrk_(&in, &in, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &		    rtl, &tmp, &tmp1, &iinfo);	    if (iinfo != 0) {		*info = -1;		return 0;	    }/* Computing MIN */	    d__2 = gu, d__3 = tmp + tmp1 + eps * 100. * (d__1 = tmp + tmp1, 		    abs(d__1));	    isrght = min(d__2,d__3);/*           Improve the estimate of the spectral diameter */	    spdiam = isrght - isleft;	} else {/*           Case of bisection *//*           Find approximations to the wanted extremal eigenvalues *//* Computing MAX */	    d__2 = gl, d__3 = w[wbegin] - werr[wbegin] - eps * 100. * (d__1 = 		    w[wbegin] - werr[wbegin], abs(d__1));	    isleft = max(d__2,d__3);/* Computing MIN */	    d__2 = gu, d__3 = w[wend] + werr[wend] + eps * 100. * (d__1 = w[		    wend] + werr[wend], abs(d__1));	    isrght = min(d__2,d__3);	}/*        Decide whether the base representation for the current block *//*        L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I *//*        should be on the left or the right end of the current block. *//*        The strategy is to shift to the end which is "more populated" *//*        Furthermore, decide whether to use DQDS for the computation of *//*        the eigenvalue approximations at the end of DLARRE or bisection. *//*        dqds is chosen if all eigenvalues are desired or the number of *//*        eigenvalues to be computed is large compared to the blocksize. */	if (irange == 1 && ! forceb) {/*           If all the eigenvalues have to be computed, we use dqd */	    usedqd = TRUE_;/*           INDL is the local index of the first eigenvalue to compute */	    indl = 1;	    indu = in;/*           MB =  number of eigenvalues to compute */	    mb = in;	    wend = wbegin + mb - 1;/*           Define 1/4 and 3/4 points of the spectrum */	    s1 = isleft + spdiam * .25;	    s2 = isrght - spdiam * .25;	} else {/*           DLARRD has computed IBLOCK and INDEXW for each eigenvalue *//*           approximation. *//*           choose sigma */	    if (usedqd) {		s1 = isleft + spdiam * .25;		s2 = isrght - spdiam * .25;	    } else {		tmp = min(isrght,*vu) - max(isleft,*vl);		s1 = max(isleft,*vl) + tmp * .25;		s2 = min(isrght,*vu) - tmp * .25;	    }	}/*        Compute the negcount at the 1/4 and 3/4 points */	if (mb > 1) {	    dlarrc_("T", &in, &s1, &s2, &d__[ibegin], &e[ibegin], pivmin, &		    cnt, &cnt1, &cnt2, &iinfo);	}	if (mb == 1) {	    sigma = gl;	    sgndef = 1.;	} else if (cnt1 - indl >= indu - cnt2) {	    if (irange == 1 && ! forceb) {		sigma = max(isleft,gl);	    } else if (usedqd) {/*              use Gerschgorin bound as shift to get pos def matrix *//*              for dqds */		sigma = isleft;	    } else {/*              use approximation of the first desired eigenvalue of the *//*              block as shift */		sigma = max(isleft,*vl);	    }	    sgndef = 1.;	} else {	    if (irange == 1 && ! forceb) {		sigma = min(isrght,gu);	    } else if (usedqd) {/*              use Gerschgorin bound as shift to get neg def matrix *//*              for dqds */		sigma = isrght;	    } else {/*              use approximation of the first desired eigenvalue of the *//*              block as shift */		sigma = min(isrght,*vu);	    }	    sgndef = -1.;	}/*        An initial SIGMA has been chosen that will be used for computing *//*        T - SIGMA I = L D L^T *//*        Define the increment TAU of the shift in case the initial shift *//*        needs to be refined to obtain a factorization with not too much *//*        element growth. */	if (usedqd) {/*           The initial SIGMA was to the outer end of the spectrum *//*           the matrix is definite and we need not retreat. */	    tau = spdiam * eps * *n + *pivmin * 2.;	} else {	    if (mb > 1) {		clwdth = w[wend] + werr[wend] - w[wbegin] - werr[wbegin];		avgap = (d__1 = clwdth / (doublereal) (wend - wbegin), abs(			d__1));		if (sgndef == 1.) {/* Computing MAX */		    d__1 = wgap[wbegin];		    tau = max(d__1,avgap) * .5;/* Computing MAX */		    d__1 = tau, d__2 = werr[wbegin];		    tau = max(d__1,d__2);		} else {/* Computing MAX */		    d__1 = wgap[wend - 1];		    tau = max(d__1,avgap) * .5;/* Computing MAX */		    d__1 = tau, d__2 = werr[wend];		    tau = max(d__1,d__2);		}	    } else {		tau = werr[wbegin];	    }	}	for (idum = 1; idum <= 6; ++idum) {/*           Compute L D L^T factorization of tridiagonal matrix T - sigma I. *//*           Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of *//*           pivots in WORK(2*IN+1:3*IN) */	    dpivot = d__[ibegin] - sigma;	    work[1] = dpivot;	    dmax__ = abs(work[1]);	    j = ibegin;	    i__2 = in - 1;	    for (i__ = 1; i__ <= i__2; ++i__) {		work[(in << 1) + i__] = 1. / work[i__];		tmp = e[j] * work[(in << 1) + i__];		work[in + i__] = tmp;		dpivot = d__[j + 1] - sigma - tmp * e[j];		work[i__ + 1] = dpivot;/* Computing MAX */		d__1 = dmax__, d__2 = abs(dpivot);		dmax__ = max(d__1,d__2);		++j;/* L70: */	    }/*           check for element growth */	    if (dmax__ > spdiam * 64.) {		norep = TRUE_;	    } else {		norep = FALSE_;	    }	    if (usedqd && ! norep) {/*              Ensure the definiteness of the representation *//*              All entries of D (of L D L^T) must have the same sign */		i__2 = in;		for (i__ = 1; i__ <= i__2; ++i__) {		    tmp = sgndef * work[i__];		    if (tmp < 0.) {			norep = TRUE_;		    }/* L71: */		}	    }	    if (norep) {/*              Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin *//*              shift which makes the matrix definite. So we should end up *//*              here really only in the case of IRANGE = VALRNG or INDRNG. */		if (idum == 5) {		    if (sgndef == 1.) {/*                    The fudged Gerschgorin shift should succeed */			sigma = gl - spdiam * 2. * eps * *n - *pivmin * 4.;		    } else {			sigma = gu + spdiam * 2. * eps * *n + *pivmin * 4.;		    }		} else {		    sigma -= sgndef * tau;		    tau *= 2.;		}	    } else {/*              an initial RRR is found */		goto L83;	    }/* L80: */	}/*        if the program reaches this point, no base representation could be *//*        found in MAXTRY iterations. */	*info = 2;	return 0;L83:/*        At this point, we have found an initial base representation *//*        T - SIGMA I = L D L^T with not too much element growth. *//*        Store the shift. */	e[iend] = sigma;/*        Store D and L. */	dcopy_(&in, &work[1], &c__1, &d__[ibegin], &c__1);	i__2 = in - 1;	dcopy_(&i__2, &work[in + 1], &c__1, &e[ibegin], &c__1);	if (mb > 1) {/*           Perturb each entry of the base representation by a small *//*           (but random) relative amount to overcome difficulties with *//*           glued matrices. */	    for (i__ = 1; i__ <= 4; ++i__) {		iseed[i__ - 1] = 1;/* L122: */	    }	    i__2 = (in << 1) - 1;	    dlarnv_(&c__2, iseed, &i__2, &work[1]);	    i__2 = in - 1;	    for (i__ = 1; i__ <= i__2; ++i__) {		d__[ibegin + i__ - 1] *= eps * 8. * work[i__] + 1.;		e[ibegin + i__ - 1] *= eps * 8. * work[in + i__] + 1.;/* L125: */	    }	    d__[iend] *= eps * 4. * work[in] + 1.;	}/*        Don't update the Gerschgorin intervals because keeping track *//*        of the updates would be too much work in DLARRV. *//*        We update W instead and use it to locate the proper Gerschgorin *//*        intervals. *//*        Compute the required eigenvalues of L D L' by bisection or dqds */	if (! usedqd) {/*           If DLARRD has been used, shift the eigenvalue approximations *//*           according to their representation. This is necessary for *//*           a uniform DLARRV since dqds computes eigenvalues of the *//*           shifted representation. In DLARRV, W will always hold the *//*           UNshifted eigenvalue approximation. */	    i__2 = wend;	    for (j = wbegin; j <= i__2; ++j) {		w[j] -= sigma;		werr[j] += (d__1 = w[j], abs(d__1)) * eps;/* L134: */	    }/*           call DLARRB to reduce eigenvalue error of the approximations *//*           from DLARRD */	    i__2 = iend - 1;	    for (i__ = ibegin; i__ <= i__2; ++i__) {/* Computing 2nd power */		d__1 = e[i__];		work[i__] = d__[i__] * (d__1 * d__1);/* L135: */	    }/*           use bisection to find EV from INDL to INDU */	    i__2 = indl - 1;	    dlarrb_(&in, &d__[ibegin], &work[ibegin], &indl, &indu, rtol1, 		    rtol2, &i__2, &w[wbegin], &wgap[wbegin], &werr[wbegin], &		    work[(*n << 1) + 1], &iwork[1], pivmin, &spdiam, &in, &		    iinfo);	    if (iinfo != 0) {		*info = -4;		return 0;	    }/*           DLARRB computes all gaps correctly except for the last one *//*           Record distance to VU/GU *//* Computing MAX */	    d__1 = 0., d__2 = *vu - sigma - (w[wend] + werr[wend]);	    wgap[wend] = max(d__1,d__2);	    i__2 = indu;	    for (i__ = indl; i__ <= i__2; ++i__) {		++(*m);		iblock[*m] = jblk;		indexw[*m] = i__;/* L138: */	    }	} else {/*           Call dqds to get all eigs (and then possibly delete unwanted *//*           eigenvalues). *//*           Note that dqds finds the eigenvalues of the L D L^T representation *//*           of T to high relative accuracy. High relative accuracy *//*           might be lost when the shift of the RRR is subtracted to obtain *//*           the eigenvalues of T. However, T is not guaranteed to define its *//*           eigenvalues to high relative accuracy anyway. *//*           Set RTOL to the order of the tolerance used in DLASQ2 *//*           This is an ESTIMATED error, the worst case bound is 4*N*EPS *//*           which is usually too large and requires unnecessary work to be *//*           done by bisection when computing the eigenvectors */	    rtol = log((doublereal) in) * 4. * eps;	    j = ibegin;	    i__2 = in - 1;	    for (i__ = 1; i__ <= i__2; ++i__) {		work[(i__ << 1) - 1] = (d__1 = d__[j], abs(d__1));		work[i__ * 2] = e[j] * e[j] * work[(i__ << 1) - 1];		++j;/* L140: */	    }	    work[(in << 1) - 1] = (d__1 = d__[iend], abs(d__1));	    work[in * 2] = 0.;	    dlasq2_(&in, &work[1], &iinfo);	    if (iinfo != 0) {/*              If IINFO = -5 then an index is part of a tight cluster *//*              and should be changed. The index is in IWORK(1) and the *//*              gap is in WORK(N+1) */		*info = -5;		return 0;	    } else {/*              Test that all eigenvalues are positive as expected */		i__2 = in;		for (i__ = 1; i__ <= i__2; ++i__) {		    if (work[i__] < 0.) {			*info = -6;			return 0;		    }/* L149: */		}	    }	    if (sgndef > 0.) {		i__2 = indu;		for (i__ = indl; i__ <= i__2; ++i__) {		    ++(*m);		    w[*m] = work[in - i__ + 1];		    iblock[*m] = jblk;		    indexw[*m] = i__;/* L150: */		}	    } else {		i__2 = indu;		for (i__ = indl; i__ <= i__2; ++i__) {		    ++(*m);		    w[*m] = -work[i__];		    iblock[*m] = jblk;		    indexw[*m] = i__;/* L160: */		}	    }	    i__2 = *m;	    for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {/*              the value of RTOL below should be the tolerance in DLASQ2 */		werr[i__] = rtol * (d__1 = w[i__], abs(d__1));/* L165: */	    }	    i__2 = *m - 1;	    for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {/*              compute the right gap between the intervals *//* Computing MAX */		d__1 = 0., d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + werr[			i__]);		wgap[i__] = max(d__1,d__2);/* L166: */	    }/* Computing MAX */	    d__1 = 0., d__2 = *vu - sigma - (w[*m] + werr[*m]);	    wgap[*m] = max(d__1,d__2);	}/*        proceed with next block */	ibegin = iend + 1;	wbegin = wend + 1;L170:	;    }    return 0;/*     end of DLARRE */} /* dlarre_ */
 |