| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 | /* dlangb.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;doublereal dlangb_(char *norm, integer *n, integer *kl, integer *ku, 	doublereal *ab, integer *ldab, doublereal *work){    /* System generated locals */    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;    doublereal ret_val, d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, k, l;    doublereal sum, scale;    extern logical lsame_(char *, char *);    doublereal value;    extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, 	    doublereal *, doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLANGB  returns the value of the one norm,  or the Frobenius norm, or *//*  the  infinity norm,  or the element of  largest absolute value  of an *//*  n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals. *//*  Description *//*  =========== *//*  DLANGB returns the value *//*     DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm' *//*              ( *//*              ( norm1(A),         NORM = '1', 'O' or 'o' *//*              ( *//*              ( normI(A),         NORM = 'I' or 'i' *//*              ( *//*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' *//*  where  norm1  denotes the  one norm of a matrix (maximum column sum), *//*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and *//*  normF  denotes the  Frobenius norm of a matrix (square root of sum of *//*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. *//*  Arguments *//*  ========= *//*  NORM    (input) CHARACTER*1 *//*          Specifies the value to be returned in DLANGB as described *//*          above. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0.  When N = 0, DLANGB is *//*          set to zero. *//*  KL      (input) INTEGER *//*          The number of sub-diagonals of the matrix A.  KL >= 0. *//*  KU      (input) INTEGER *//*          The number of super-diagonals of the matrix A.  KU >= 0. *//*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) *//*          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th *//*          column of A is stored in the j-th column of the array AB as *//*          follows: *//*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KL+KU+1. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), *//*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not *//*          referenced. *//* ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --work;    /* Function Body */    if (*n == 0) {	value = 0.;    } else if (lsame_(norm, "M")) {/*        Find max(abs(A(i,j))). */	value = 0.;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/* Computing MAX */	    i__2 = *ku + 2 - j;/* Computing MIN */	    i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;	    i__3 = min(i__4,i__5);	    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {/* Computing MAX */		d__2 = value, d__3 = (d__1 = ab[i__ + j * ab_dim1], abs(d__1))			;		value = max(d__2,d__3);/* L10: */	    }/* L20: */	}    } else if (lsame_(norm, "O") || *(unsigned char *)	    norm == '1') {/*        Find norm1(A). */	value = 0.;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    sum = 0.;/* Computing MAX */	    i__3 = *ku + 2 - j;/* Computing MIN */	    i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;	    i__2 = min(i__4,i__5);	    for (i__ = max(i__3,1); i__ <= i__2; ++i__) {		sum += (d__1 = ab[i__ + j * ab_dim1], abs(d__1));/* L30: */	    }	    value = max(value,sum);/* L40: */	}    } else if (lsame_(norm, "I")) {/*        Find normI(A). */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    work[i__] = 0.;/* L50: */	}	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    k = *ku + 1 - j;/* Computing MAX */	    i__2 = 1, i__3 = j - *ku;/* Computing MIN */	    i__5 = *n, i__6 = j + *kl;	    i__4 = min(i__5,i__6);	    for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {		work[i__] += (d__1 = ab[k + i__ + j * ab_dim1], abs(d__1));/* L60: */	    }/* L70: */	}	value = 0.;	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MAX */	    d__1 = value, d__2 = work[i__];	    value = max(d__1,d__2);/* L80: */	}    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {/*        Find normF(A). */	scale = 0.;	sum = 1.;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/* Computing MAX */	    i__4 = 1, i__2 = j - *ku;	    l = max(i__4,i__2);	    k = *ku + 1 - j + l;/* Computing MIN */	    i__2 = *n, i__3 = j + *kl;	    i__4 = min(i__2,i__3) - l + 1;	    dlassq_(&i__4, &ab[k + j * ab_dim1], &c__1, &scale, &sum);/* L90: */	}	value = scale * sqrt(sum);    }    ret_val = value;    return ret_val;/*     End of DLANGB */} /* dlangb_ */
 |