| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 | /* dlalsa.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b7 = 1.;static doublereal c_b8 = 0.;static integer c__2 = 2;/* Subroutine */ int dlalsa_(integer *icompq, integer *smlsiz, integer *n, 	integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer *	ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k, 	doublereal *difl, doublereal *difr, doublereal *z__, doublereal *	poles, integer *givptr, integer *givcol, integer *ldgcol, integer *	perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *	work, integer *iwork, integer *info){    /* System generated locals */    integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1, 	    b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1, 	    difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,	     u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, 	    i__2;    /* Builtin functions */    integer pow_ii(integer *, integer *);    /* Local variables */    integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl, ndb1, 	    nlp1, lvl2, nrp1, nlvl, sqre;    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    integer inode, ndiml, ndimr;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dlals0_(integer *, integer *, integer *, 	     integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, integer *, integer *, integer *, integer *, doublereal 	    *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *), dlasdt_(integer *, integer *, integer *, integer *, 	    integer *, integer *, integer *), xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLALSA is an itermediate step in solving the least squares problem *//*  by computing the SVD of the coefficient matrix in compact form (The *//*  singular vectors are computed as products of simple orthorgonal *//*  matrices.). *//*  If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector *//*  matrix of an upper bidiagonal matrix to the right hand side; and if *//*  ICOMPQ = 1, DLALSA applies the right singular vector matrix to the *//*  right hand side. The singular vector matrices were generated in *//*  compact form by DLALSA. *//*  Arguments *//*  ========= *//*  ICOMPQ (input) INTEGER *//*         Specifies whether the left or the right singular vector *//*         matrix is involved. *//*         = 0: Left singular vector matrix *//*         = 1: Right singular vector matrix *//*  SMLSIZ (input) INTEGER *//*         The maximum size of the subproblems at the bottom of the *//*         computation tree. *//*  N      (input) INTEGER *//*         The row and column dimensions of the upper bidiagonal matrix. *//*  NRHS   (input) INTEGER *//*         The number of columns of B and BX. NRHS must be at least 1. *//*  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) *//*         On input, B contains the right hand sides of the least *//*         squares problem in rows 1 through M. *//*         On output, B contains the solution X in rows 1 through N. *//*  LDB    (input) INTEGER *//*         The leading dimension of B in the calling subprogram. *//*         LDB must be at least max(1,MAX( M, N ) ). *//*  BX     (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) *//*         On exit, the result of applying the left or right singular *//*         vector matrix to B. *//*  LDBX   (input) INTEGER *//*         The leading dimension of BX. *//*  U      (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). *//*         On entry, U contains the left singular vector matrices of all *//*         subproblems at the bottom level. *//*  LDU    (input) INTEGER, LDU = > N. *//*         The leading dimension of arrays U, VT, DIFL, DIFR, *//*         POLES, GIVNUM, and Z. *//*  VT     (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). *//*         On entry, VT' contains the right singular vector matrices of *//*         all subproblems at the bottom level. *//*  K      (input) INTEGER array, dimension ( N ). *//*  DIFL   (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). *//*         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. *//*  DIFR   (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). *//*         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record *//*         distances between singular values on the I-th level and *//*         singular values on the (I -1)-th level, and DIFR(*, 2 * I) *//*         record the normalizing factors of the right singular vectors *//*         matrices of subproblems on I-th level. *//*  Z      (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). *//*         On entry, Z(1, I) contains the components of the deflation- *//*         adjusted updating row vector for subproblems on the I-th *//*         level. *//*  POLES  (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). *//*         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old *//*         singular values involved in the secular equations on the I-th *//*         level. *//*  GIVPTR (input) INTEGER array, dimension ( N ). *//*         On entry, GIVPTR( I ) records the number of Givens *//*         rotations performed on the I-th problem on the computation *//*         tree. *//*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). *//*         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the *//*         locations of Givens rotations performed on the I-th level on *//*         the computation tree. *//*  LDGCOL (input) INTEGER, LDGCOL = > N. *//*         The leading dimension of arrays GIVCOL and PERM. *//*  PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ). *//*         On entry, PERM(*, I) records permutations done on the I-th *//*         level of the computation tree. *//*  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). *//*         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- *//*         values of Givens rotations performed on the I-th level on the *//*         computation tree. *//*  C      (input) DOUBLE PRECISION array, dimension ( N ). *//*         On entry, if the I-th subproblem is not square, *//*         C( I ) contains the C-value of a Givens rotation related to *//*         the right null space of the I-th subproblem. *//*  S      (input) DOUBLE PRECISION array, dimension ( N ). *//*         On entry, if the I-th subproblem is not square, *//*         S( I ) contains the S-value of a Givens rotation related to *//*         the right null space of the I-th subproblem. *//*  WORK   (workspace) DOUBLE PRECISION array. *//*         The dimension must be at least N. *//*  IWORK  (workspace) INTEGER array. *//*         The dimension must be at least 3 * N *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Ren-Cang Li, Computer Science Division, University of *//*       California at Berkeley, USA *//*     Osni Marques, LBNL/NERSC, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    bx_dim1 = *ldbx;    bx_offset = 1 + bx_dim1;    bx -= bx_offset;    givnum_dim1 = *ldu;    givnum_offset = 1 + givnum_dim1;    givnum -= givnum_offset;    poles_dim1 = *ldu;    poles_offset = 1 + poles_dim1;    poles -= poles_offset;    z_dim1 = *ldu;    z_offset = 1 + z_dim1;    z__ -= z_offset;    difr_dim1 = *ldu;    difr_offset = 1 + difr_dim1;    difr -= difr_offset;    difl_dim1 = *ldu;    difl_offset = 1 + difl_dim1;    difl -= difl_offset;    vt_dim1 = *ldu;    vt_offset = 1 + vt_dim1;    vt -= vt_offset;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    --k;    --givptr;    perm_dim1 = *ldgcol;    perm_offset = 1 + perm_dim1;    perm -= perm_offset;    givcol_dim1 = *ldgcol;    givcol_offset = 1 + givcol_dim1;    givcol -= givcol_offset;    --c__;    --s;    --work;    --iwork;    /* Function Body */    *info = 0;    if (*icompq < 0 || *icompq > 1) {	*info = -1;    } else if (*smlsiz < 3) {	*info = -2;    } else if (*n < *smlsiz) {	*info = -3;    } else if (*nrhs < 1) {	*info = -4;    } else if (*ldb < *n) {	*info = -6;    } else if (*ldbx < *n) {	*info = -8;    } else if (*ldu < *n) {	*info = -10;    } else if (*ldgcol < *n) {	*info = -19;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLALSA", &i__1);	return 0;    }/*     Book-keeping and  setting up the computation tree. */    inode = 1;    ndiml = inode + *n;    ndimr = ndiml + *n;    dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 	    smlsiz);/*     The following code applies back the left singular vector factors. *//*     For applying back the right singular vector factors, go to 50. */    if (*icompq == 1) {	goto L50;    }/*     The nodes on the bottom level of the tree were solved *//*     by DLASDQ. The corresponding left and right singular vector *//*     matrices are in explicit form. First apply back the left *//*     singular vector matrices. */    ndb1 = (nd + 1) / 2;    i__1 = nd;    for (i__ = ndb1; i__ <= i__1; ++i__) {/*        IC : center row of each node *//*        NL : number of rows of left  subproblem *//*        NR : number of rows of right subproblem *//*        NLF: starting row of the left   subproblem *//*        NRF: starting row of the right  subproblem */	i1 = i__ - 1;	ic = iwork[inode + i1];	nl = iwork[ndiml + i1];	nr = iwork[ndimr + i1];	nlf = ic - nl;	nrf = ic + 1;	dgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf 		+ b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);	dgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf 		+ b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);/* L10: */    }/*     Next copy the rows of B that correspond to unchanged rows *//*     in the bidiagonal matrix to BX. */    i__1 = nd;    for (i__ = 1; i__ <= i__1; ++i__) {	ic = iwork[inode + i__ - 1];	dcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);/* L20: */    }/*     Finally go through the left singular vector matrices of all *//*     the other subproblems bottom-up on the tree. */    j = pow_ii(&c__2, &nlvl);    sqre = 0;    for (lvl = nlvl; lvl >= 1; --lvl) {	lvl2 = (lvl << 1) - 1;/*        find the first node LF and last node LL on *//*        the current level LVL */	if (lvl == 1) {	    lf = 1;	    ll = 1;	} else {	    i__1 = lvl - 1;	    lf = pow_ii(&c__2, &i__1);	    ll = (lf << 1) - 1;	}	i__1 = ll;	for (i__ = lf; i__ <= i__1; ++i__) {	    im1 = i__ - 1;	    ic = iwork[inode + im1];	    nl = iwork[ndiml + im1];	    nr = iwork[ndimr + im1];	    nlf = ic - nl;	    nrf = ic + 1;	    --j;	    dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &		    b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &		    givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &		    givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *		     poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + 		    lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[		    j], &s[j], &work[1], info);/* L30: */	}/* L40: */    }    goto L90;/*     ICOMPQ = 1: applying back the right singular vector factors. */L50:/*     First now go through the right singular vector matrices of all *//*     the tree nodes top-down. */    j = 0;    i__1 = nlvl;    for (lvl = 1; lvl <= i__1; ++lvl) {	lvl2 = (lvl << 1) - 1;/*        Find the first node LF and last node LL on *//*        the current level LVL. */	if (lvl == 1) {	    lf = 1;	    ll = 1;	} else {	    i__2 = lvl - 1;	    lf = pow_ii(&c__2, &i__2);	    ll = (lf << 1) - 1;	}	i__2 = lf;	for (i__ = ll; i__ >= i__2; --i__) {	    im1 = i__ - 1;	    ic = iwork[inode + im1];	    nl = iwork[ndiml + im1];	    nr = iwork[ndimr + im1];	    nlf = ic - nl;	    nrf = ic + 1;	    if (i__ == ll) {		sqre = 0;	    } else {		sqre = 1;	    }	    ++j;	    dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[		    nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &		    givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &		    givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *		     poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + 		    lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[		    j], &s[j], &work[1], info);/* L60: */	}/* L70: */    }/*     The nodes on the bottom level of the tree were solved *//*     by DLASDQ. The corresponding right singular vector *//*     matrices are in explicit form. Apply them back. */    ndb1 = (nd + 1) / 2;    i__1 = nd;    for (i__ = ndb1; i__ <= i__1; ++i__) {	i1 = i__ - 1;	ic = iwork[inode + i1];	nl = iwork[ndiml + i1];	nr = iwork[ndimr + i1];	nlp1 = nl + 1;	if (i__ == nd) {	    nrp1 = nr;	} else {	    nrp1 = nr + 1;	}	nlf = ic - nl;	nrf = ic + 1;	dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, &		b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);	dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, &		b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);/* L80: */    }L90:    return 0;/*     End of DLALSA */} /* dlalsa_ */
 |