| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 | /* dlagtf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dlagtf_(integer *n, doublereal *a, doublereal *lambda, 	doublereal *b, doublereal *c__, doublereal *tol, doublereal *d__, 	integer *in, integer *info){    /* System generated locals */    integer i__1;    doublereal d__1, d__2;    /* Local variables */    integer k;    doublereal tl, eps, piv1, piv2, temp, mult, scale1, scale2;    extern doublereal dlamch_(char *);    extern /* Subroutine */ int xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n *//*  tridiagonal matrix and lambda is a scalar, as *//*     T - lambda*I = PLU, *//*  where P is a permutation matrix, L is a unit lower tridiagonal matrix *//*  with at most one non-zero sub-diagonal elements per column and U is *//*  an upper triangular matrix with at most two non-zero super-diagonal *//*  elements per column. *//*  The factorization is obtained by Gaussian elimination with partial *//*  pivoting and implicit row scaling. *//*  The parameter LAMBDA is included in the routine so that DLAGTF may *//*  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by *//*  inverse iteration. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix T. *//*  A       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, A must contain the diagonal elements of T. *//*          On exit, A is overwritten by the n diagonal elements of the *//*          upper triangular matrix U of the factorization of T. *//*  LAMBDA  (input) DOUBLE PRECISION *//*          On entry, the scalar lambda. *//*  B       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, B must contain the (n-1) super-diagonal elements of *//*          T. *//*          On exit, B is overwritten by the (n-1) super-diagonal *//*          elements of the matrix U of the factorization of T. *//*  C       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, C must contain the (n-1) sub-diagonal elements of *//*          T. *//*          On exit, C is overwritten by the (n-1) sub-diagonal elements *//*          of the matrix L of the factorization of T. *//*  TOL     (input) DOUBLE PRECISION *//*          On entry, a relative tolerance used to indicate whether or *//*          not the matrix (T - lambda*I) is nearly singular. TOL should *//*          normally be chose as approximately the largest relative error *//*          in the elements of T. For example, if the elements of T are *//*          correct to about 4 significant figures, then TOL should be *//*          set to about 5*10**(-4). If TOL is supplied as less than eps, *//*          where eps is the relative machine precision, then the value *//*          eps is used in place of TOL. *//*  D       (output) DOUBLE PRECISION array, dimension (N-2) *//*          On exit, D is overwritten by the (n-2) second super-diagonal *//*          elements of the matrix U of the factorization of T. *//*  IN      (output) INTEGER array, dimension (N) *//*          On exit, IN contains details of the permutation matrix P. If *//*          an interchange occurred at the kth step of the elimination, *//*          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) *//*          returns the smallest positive integer j such that *//*             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, *//*          where norm( A(j) ) denotes the sum of the absolute values of *//*          the jth row of the matrix A. If no such j exists then IN(n) *//*          is returned as zero. If IN(n) is returned as positive, then a *//*          diagonal element of U is small, indicating that *//*          (T - lambda*I) is singular or nearly singular, *//*  INFO    (output) INTEGER *//*          = 0   : successful exit *//*          .lt. 0: if INFO = -k, the kth argument had an illegal value *//* ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --in;    --d__;    --c__;    --b;    --a;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;	i__1 = -(*info);	xerbla_("DLAGTF", &i__1);	return 0;    }    if (*n == 0) {	return 0;    }    a[1] -= *lambda;    in[*n] = 0;    if (*n == 1) {	if (a[1] == 0.) {	    in[1] = 1;	}	return 0;    }    eps = dlamch_("Epsilon");    tl = max(*tol,eps);    scale1 = abs(a[1]) + abs(b[1]);    i__1 = *n - 1;    for (k = 1; k <= i__1; ++k) {	a[k + 1] -= *lambda;	scale2 = (d__1 = c__[k], abs(d__1)) + (d__2 = a[k + 1], abs(d__2));	if (k < *n - 1) {	    scale2 += (d__1 = b[k + 1], abs(d__1));	}	if (a[k] == 0.) {	    piv1 = 0.;	} else {	    piv1 = (d__1 = a[k], abs(d__1)) / scale1;	}	if (c__[k] == 0.) {	    in[k] = 0;	    piv2 = 0.;	    scale1 = scale2;	    if (k < *n - 1) {		d__[k] = 0.;	    }	} else {	    piv2 = (d__1 = c__[k], abs(d__1)) / scale2;	    if (piv2 <= piv1) {		in[k] = 0;		scale1 = scale2;		c__[k] /= a[k];		a[k + 1] -= c__[k] * b[k];		if (k < *n - 1) {		    d__[k] = 0.;		}	    } else {		in[k] = 1;		mult = a[k] / c__[k];		a[k] = c__[k];		temp = a[k + 1];		a[k + 1] = b[k] - mult * temp;		if (k < *n - 1) {		    d__[k] = b[k + 1];		    b[k + 1] = -mult * d__[k];		}		b[k] = temp;		c__[k] = mult;	    }	}	if (max(piv1,piv2) <= tl && in[*n] == 0) {	    in[*n] = k;	}/* L10: */    }    if ((d__1 = a[*n], abs(d__1)) <= scale1 * tl && in[*n] == 0) {	in[*n] = *n;    }    return 0;/*     End of DLAGTF */} /* dlagtf_ */
 |