| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 | /* dlaev2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dlaev2_(doublereal *a, doublereal *b, doublereal *c__, 	doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1){    /* System generated locals */    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs;    integer sgn1, sgn2;    doublereal acmn, acmx;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix *//*     [  A   B  ] *//*     [  B   C  ]. *//*  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the *//*  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right *//*  eigenvector for RT1, giving the decomposition *//*     [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ] *//*     [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ]. *//*  Arguments *//*  ========= *//*  A       (input) DOUBLE PRECISION *//*          The (1,1) element of the 2-by-2 matrix. *//*  B       (input) DOUBLE PRECISION *//*          The (1,2) element and the conjugate of the (2,1) element of *//*          the 2-by-2 matrix. *//*  C       (input) DOUBLE PRECISION *//*          The (2,2) element of the 2-by-2 matrix. *//*  RT1     (output) DOUBLE PRECISION *//*          The eigenvalue of larger absolute value. *//*  RT2     (output) DOUBLE PRECISION *//*          The eigenvalue of smaller absolute value. *//*  CS1     (output) DOUBLE PRECISION *//*  SN1     (output) DOUBLE PRECISION *//*          The vector (CS1, SN1) is a unit right eigenvector for RT1. *//*  Further Details *//*  =============== *//*  RT1 is accurate to a few ulps barring over/underflow. *//*  RT2 may be inaccurate if there is massive cancellation in the *//*  determinant A*C-B*B; higher precision or correctly rounded or *//*  correctly truncated arithmetic would be needed to compute RT2 *//*  accurately in all cases. *//*  CS1 and SN1 are accurate to a few ulps barring over/underflow. *//*  Overflow is possible only if RT1 is within a factor of 5 of overflow. *//*  Underflow is harmless if the input data is 0 or exceeds *//*     underflow_threshold / macheps. *//* ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Compute the eigenvalues */    sm = *a + *c__;    df = *a - *c__;    adf = abs(df);    tb = *b + *b;    ab = abs(tb);    if (abs(*a) > abs(*c__)) {	acmx = *a;	acmn = *c__;    } else {	acmx = *c__;	acmn = *a;    }    if (adf > ab) {/* Computing 2nd power */	d__1 = ab / adf;	rt = adf * sqrt(d__1 * d__1 + 1.);    } else if (adf < ab) {/* Computing 2nd power */	d__1 = adf / ab;	rt = ab * sqrt(d__1 * d__1 + 1.);    } else {/*        Includes case AB=ADF=0 */	rt = ab * sqrt(2.);    }    if (sm < 0.) {	*rt1 = (sm - rt) * .5;	sgn1 = -1;/*        Order of execution important. *//*        To get fully accurate smaller eigenvalue, *//*        next line needs to be executed in higher precision. */	*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;    } else if (sm > 0.) {	*rt1 = (sm + rt) * .5;	sgn1 = 1;/*        Order of execution important. *//*        To get fully accurate smaller eigenvalue, *//*        next line needs to be executed in higher precision. */	*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;    } else {/*        Includes case RT1 = RT2 = 0 */	*rt1 = rt * .5;	*rt2 = rt * -.5;	sgn1 = 1;    }/*     Compute the eigenvector */    if (df >= 0.) {	cs = df + rt;	sgn2 = 1;    } else {	cs = df - rt;	sgn2 = -1;    }    acs = abs(cs);    if (acs > ab) {	ct = -tb / cs;	*sn1 = 1. / sqrt(ct * ct + 1.);	*cs1 = ct * *sn1;    } else {	if (ab == 0.) {	    *cs1 = 1.;	    *sn1 = 0.;	} else {	    tn = -cs / tb;	    *cs1 = 1. / sqrt(tn * tn + 1.);	    *sn1 = tn * *cs1;	}    }    if (sgn1 == sgn2) {	tn = *cs1;	*cs1 = -(*sn1);	*sn1 = tn;    }    return 0;/*     End of DLAEV2 */} /* dlaev2_ */
 |