| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955 | /* dlaed4.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dlaed4_(integer *n, integer *i__, doublereal *d__, 	doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dlam, 	 integer *info){    /* System generated locals */    integer i__1;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal a, b, c__;    integer j;    doublereal w;    integer ii;    doublereal dw, zz[3];    integer ip1;    doublereal del, eta, phi, eps, tau, psi;    integer iim1, iip1;    doublereal dphi, dpsi;    integer iter;    doublereal temp, prew, temp1, dltlb, dltub, midpt;    integer niter;    logical swtch;    extern /* Subroutine */ int dlaed5_(integer *, doublereal *, doublereal *, 	     doublereal *, doublereal *, doublereal *), dlaed6_(integer *, 	    logical *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, integer *);    logical swtch3;    extern doublereal dlamch_(char *);    logical orgati;    doublereal erretm, rhoinv;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This subroutine computes the I-th updated eigenvalue of a symmetric *//*  rank-one modification to a diagonal matrix whose elements are *//*  given in the array d, and that *//*             D(i) < D(j)  for  i < j *//*  and that RHO > 0.  This is arranged by the calling routine, and is *//*  no loss in generality.  The rank-one modified system is thus *//*             diag( D )  +  RHO *  Z * Z_transpose. *//*  where we assume the Euclidean norm of Z is 1. *//*  The method consists of approximating the rational functions in the *//*  secular equation by simpler interpolating rational functions. *//*  Arguments *//*  ========= *//*  N      (input) INTEGER *//*         The length of all arrays. *//*  I      (input) INTEGER *//*         The index of the eigenvalue to be computed.  1 <= I <= N. *//*  D      (input) DOUBLE PRECISION array, dimension (N) *//*         The original eigenvalues.  It is assumed that they are in *//*         order, D(I) < D(J)  for I < J. *//*  Z      (input) DOUBLE PRECISION array, dimension (N) *//*         The components of the updating vector. *//*  DELTA  (output) DOUBLE PRECISION array, dimension (N) *//*         If N .GT. 2, DELTA contains (D(j) - lambda_I) in its  j-th *//*         component.  If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5 *//*         for detail. The vector DELTA contains the information necessary *//*         to construct the eigenvectors by DLAED3 and DLAED9. *//*  RHO    (input) DOUBLE PRECISION *//*         The scalar in the symmetric updating formula. *//*  DLAM   (output) DOUBLE PRECISION *//*         The computed lambda_I, the I-th updated eigenvalue. *//*  INFO   (output) INTEGER *//*         = 0:  successful exit *//*         > 0:  if INFO = 1, the updating process failed. *//*  Internal Parameters *//*  =================== *//*  Logical variable ORGATI (origin-at-i?) is used for distinguishing *//*  whether D(i) or D(i+1) is treated as the origin. *//*            ORGATI = .true.    origin at i *//*            ORGATI = .false.   origin at i+1 *//*   Logical variable SWTCH3 (switch-for-3-poles?) is for noting *//*   if we are working with THREE poles! *//*   MAXIT is the maximum number of iterations allowed for each *//*   eigenvalue. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ren-Cang Li, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Since this routine is called in an inner loop, we do no argument *//*     checking. *//*     Quick return for N=1 and 2. */    /* Parameter adjustments */    --delta;    --z__;    --d__;    /* Function Body */    *info = 0;    if (*n == 1) {/*         Presumably, I=1 upon entry */	*dlam = d__[1] + *rho * z__[1] * z__[1];	delta[1] = 1.;	return 0;    }    if (*n == 2) {	dlaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);	return 0;    }/*     Compute machine epsilon */    eps = dlamch_("Epsilon");    rhoinv = 1. / *rho;/*     The case I = N */    if (*i__ == *n) {/*        Initialize some basic variables */	ii = *n - 1;	niter = 1;/*        Calculate initial guess */	midpt = *rho / 2.;/*        If ||Z||_2 is not one, then TEMP should be set to *//*        RHO * ||Z||_2^2 / TWO */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    delta[j] = d__[j] - d__[*i__] - midpt;/* L10: */	}	psi = 0.;	i__1 = *n - 2;	for (j = 1; j <= i__1; ++j) {	    psi += z__[j] * z__[j] / delta[j];/* L20: */	}	c__ = rhoinv + psi;	w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*		n];	if (w <= 0.) {	    temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho) 		    + z__[*n] * z__[*n] / *rho;	    if (c__ <= temp) {		tau = *rho;	    } else {		del = d__[*n] - d__[*n - 1];		a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]			;		b = z__[*n] * z__[*n] * del;		if (a < 0.) {		    tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);		} else {		    tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);		}	    }/*           It can be proved that *//*               D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO */	    dltlb = midpt;	    dltub = *rho;	} else {	    del = d__[*n] - d__[*n - 1];	    a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];	    b = z__[*n] * z__[*n] * del;	    if (a < 0.) {		tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);	    } else {		tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);	    }/*           It can be proved that *//*               D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2 */	    dltlb = 0.;	    dltub = midpt;	}	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    delta[j] = d__[j] - d__[*i__] - tau;/* L30: */	}/*        Evaluate PSI and the derivative DPSI */	dpsi = 0.;	psi = 0.;	erretm = 0.;	i__1 = ii;	for (j = 1; j <= i__1; ++j) {	    temp = z__[j] / delta[j];	    psi += z__[j] * temp;	    dpsi += temp * temp;	    erretm += psi;/* L40: */	}	erretm = abs(erretm);/*        Evaluate PHI and the derivative DPHI */	temp = z__[*n] / delta[*n];	phi = z__[*n] * temp;	dphi = temp * temp;	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 		+ dphi);	w = rhoinv + phi + psi;/*        Test for convergence */	if (abs(w) <= eps * erretm) {	    *dlam = d__[*i__] + tau;	    goto L250;	}	if (w <= 0.) {	    dltlb = max(dltlb,tau);	} else {	    dltub = min(dltub,tau);	}/*        Calculate the new step */	++niter;	c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;	a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (		dpsi + dphi);	b = delta[*n - 1] * delta[*n] * w;	if (c__ < 0.) {	    c__ = abs(c__);	}	if (c__ == 0.) {/*          ETA = B/A *//*           ETA = RHO - TAU */	    eta = dltub - tau;	} else if (a >= 0.) {	    eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ 		    * 2.);	} else {	    eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))		    );	}/*        Note, eta should be positive if w is negative, and *//*        eta should be negative otherwise. However, *//*        if for some reason caused by roundoff, eta*w > 0, *//*        we simply use one Newton step instead. This way *//*        will guarantee eta*w < 0. */	if (w * eta > 0.) {	    eta = -w / (dpsi + dphi);	}	temp = tau + eta;	if (temp > dltub || temp < dltlb) {	    if (w < 0.) {		eta = (dltub - tau) / 2.;	    } else {		eta = (dltlb - tau) / 2.;	    }	}	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    delta[j] -= eta;/* L50: */	}	tau += eta;/*        Evaluate PSI and the derivative DPSI */	dpsi = 0.;	psi = 0.;	erretm = 0.;	i__1 = ii;	for (j = 1; j <= i__1; ++j) {	    temp = z__[j] / delta[j];	    psi += z__[j] * temp;	    dpsi += temp * temp;	    erretm += psi;/* L60: */	}	erretm = abs(erretm);/*        Evaluate PHI and the derivative DPHI */	temp = z__[*n] / delta[*n];	phi = z__[*n] * temp;	dphi = temp * temp;	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 		+ dphi);	w = rhoinv + phi + psi;/*        Main loop to update the values of the array   DELTA */	iter = niter + 1;	for (niter = iter; niter <= 30; ++niter) {/*           Test for convergence */	    if (abs(w) <= eps * erretm) {		*dlam = d__[*i__] + tau;		goto L250;	    }	    if (w <= 0.) {		dltlb = max(dltlb,tau);	    } else {		dltub = min(dltub,tau);	    }/*           Calculate the new step */	    c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;	    a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * 		    (dpsi + dphi);	    b = delta[*n - 1] * delta[*n] * w;	    if (a >= 0.) {		eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (			c__ * 2.);	    } else {		eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(			d__1))));	    }/*           Note, eta should be positive if w is negative, and *//*           eta should be negative otherwise. However, *//*           if for some reason caused by roundoff, eta*w > 0, *//*           we simply use one Newton step instead. This way *//*           will guarantee eta*w < 0. */	    if (w * eta > 0.) {		eta = -w / (dpsi + dphi);	    }	    temp = tau + eta;	    if (temp > dltub || temp < dltlb) {		if (w < 0.) {		    eta = (dltub - tau) / 2.;		} else {		    eta = (dltlb - tau) / 2.;		}	    }	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		delta[j] -= eta;/* L70: */	    }	    tau += eta;/*           Evaluate PSI and the derivative DPSI */	    dpsi = 0.;	    psi = 0.;	    erretm = 0.;	    i__1 = ii;	    for (j = 1; j <= i__1; ++j) {		temp = z__[j] / delta[j];		psi += z__[j] * temp;		dpsi += temp * temp;		erretm += psi;/* L80: */	    }	    erretm = abs(erretm);/*           Evaluate PHI and the derivative DPHI */	    temp = z__[*n] / delta[*n];	    phi = z__[*n] * temp;	    dphi = temp * temp;	    erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (		    dpsi + dphi);	    w = rhoinv + phi + psi;/* L90: */	}/*        Return with INFO = 1, NITER = MAXIT and not converged */	*info = 1;	*dlam = d__[*i__] + tau;	goto L250;/*        End for the case I = N */    } else {/*        The case for I < N */	niter = 1;	ip1 = *i__ + 1;/*        Calculate initial guess */	del = d__[ip1] - d__[*i__];	midpt = del / 2.;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    delta[j] = d__[j] - d__[*i__] - midpt;/* L100: */	}	psi = 0.;	i__1 = *i__ - 1;	for (j = 1; j <= i__1; ++j) {	    psi += z__[j] * z__[j] / delta[j];/* L110: */	}	phi = 0.;	i__1 = *i__ + 2;	for (j = *n; j >= i__1; --j) {	    phi += z__[j] * z__[j] / delta[j];/* L120: */	}	c__ = rhoinv + psi + phi;	w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] / 		delta[ip1];	if (w > 0.) {/*           d(i)< the ith eigenvalue < (d(i)+d(i+1))/2 *//*           We choose d(i) as origin. */	    orgati = TRUE_;	    a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];	    b = z__[*i__] * z__[*i__] * del;	    if (a > 0.) {		tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(			d__1))));	    } else {		tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (			c__ * 2.);	    }	    dltlb = 0.;	    dltub = midpt;	} else {/*           (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1) *//*           We choose d(i+1) as origin. */	    orgati = FALSE_;	    a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];	    b = z__[ip1] * z__[ip1] * del;	    if (a < 0.) {		tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(			d__1))));	    } else {		tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) / 			(c__ * 2.);	    }	    dltlb = -midpt;	    dltub = 0.;	}	if (orgati) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		delta[j] = d__[j] - d__[*i__] - tau;/* L130: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		delta[j] = d__[j] - d__[ip1] - tau;/* L140: */	    }	}	if (orgati) {	    ii = *i__;	} else {	    ii = *i__ + 1;	}	iim1 = ii - 1;	iip1 = ii + 1;/*        Evaluate PSI and the derivative DPSI */	dpsi = 0.;	psi = 0.;	erretm = 0.;	i__1 = iim1;	for (j = 1; j <= i__1; ++j) {	    temp = z__[j] / delta[j];	    psi += z__[j] * temp;	    dpsi += temp * temp;	    erretm += psi;/* L150: */	}	erretm = abs(erretm);/*        Evaluate PHI and the derivative DPHI */	dphi = 0.;	phi = 0.;	i__1 = iip1;	for (j = *n; j >= i__1; --j) {	    temp = z__[j] / delta[j];	    phi += z__[j] * temp;	    dphi += temp * temp;	    erretm += phi;/* L160: */	}	w = rhoinv + phi + psi;/*        W is the value of the secular function with *//*        its ii-th element removed. */	swtch3 = FALSE_;	if (orgati) {	    if (w < 0.) {		swtch3 = TRUE_;	    }	} else {	    if (w > 0.) {		swtch3 = TRUE_;	    }	}	if (ii == 1 || ii == *n) {	    swtch3 = FALSE_;	}	temp = z__[ii] / delta[ii];	dw = dpsi + dphi + temp * temp;	temp = z__[ii] * temp;	w += temp;	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 		abs(tau) * dw;/*        Test for convergence */	if (abs(w) <= eps * erretm) {	    if (orgati) {		*dlam = d__[*i__] + tau;	    } else {		*dlam = d__[ip1] + tau;	    }	    goto L250;	}	if (w <= 0.) {	    dltlb = max(dltlb,tau);	} else {	    dltub = min(dltub,tau);	}/*        Calculate the new step */	++niter;	if (! swtch3) {	    if (orgati) {/* Computing 2nd power */		d__1 = z__[*i__] / delta[*i__];		c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (d__1 * 			d__1);	    } else {/* Computing 2nd power */		d__1 = z__[ip1] / delta[ip1];		c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (d__1 * 			d__1);	    }	    a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] * 		    dw;	    b = delta[*i__] * delta[ip1] * w;	    if (c__ == 0.) {		if (a == 0.) {		    if (orgati) {			a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] * 				(dpsi + dphi);		    } else {			a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] * 				(dpsi + dphi);		    }		}		eta = b / a;	    } else if (a <= 0.) {		eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (			c__ * 2.);	    } else {		eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(			d__1))));	    }	} else {/*           Interpolation using THREE most relevant poles */	    temp = rhoinv + psi + phi;	    if (orgati) {		temp1 = z__[iim1] / delta[iim1];		temp1 *= temp1;		c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[			iip1]) * temp1;		zz[0] = z__[iim1] * z__[iim1];		zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);	    } else {		temp1 = z__[iip1] / delta[iip1];		temp1 *= temp1;		c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[			iim1]) * temp1;		zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));		zz[2] = z__[iip1] * z__[iip1];	    }	    zz[1] = z__[ii] * z__[ii];	    dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);	    if (*info != 0) {		goto L250;	    }	}/*        Note, eta should be positive if w is negative, and *//*        eta should be negative otherwise. However, *//*        if for some reason caused by roundoff, eta*w > 0, *//*        we simply use one Newton step instead. This way *//*        will guarantee eta*w < 0. */	if (w * eta >= 0.) {	    eta = -w / dw;	}	temp = tau + eta;	if (temp > dltub || temp < dltlb) {	    if (w < 0.) {		eta = (dltub - tau) / 2.;	    } else {		eta = (dltlb - tau) / 2.;	    }	}	prew = w;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    delta[j] -= eta;/* L180: */	}/*        Evaluate PSI and the derivative DPSI */	dpsi = 0.;	psi = 0.;	erretm = 0.;	i__1 = iim1;	for (j = 1; j <= i__1; ++j) {	    temp = z__[j] / delta[j];	    psi += z__[j] * temp;	    dpsi += temp * temp;	    erretm += psi;/* L190: */	}	erretm = abs(erretm);/*        Evaluate PHI and the derivative DPHI */	dphi = 0.;	phi = 0.;	i__1 = iip1;	for (j = *n; j >= i__1; --j) {	    temp = z__[j] / delta[j];	    phi += z__[j] * temp;	    dphi += temp * temp;	    erretm += phi;/* L200: */	}	temp = z__[ii] / delta[ii];	dw = dpsi + dphi + temp * temp;	temp = z__[ii] * temp;	w = rhoinv + phi + psi + temp;	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + (		d__1 = tau + eta, abs(d__1)) * dw;	swtch = FALSE_;	if (orgati) {	    if (-w > abs(prew) / 10.) {		swtch = TRUE_;	    }	} else {	    if (w > abs(prew) / 10.) {		swtch = TRUE_;	    }	}	tau += eta;/*        Main loop to update the values of the array   DELTA */	iter = niter + 1;	for (niter = iter; niter <= 30; ++niter) {/*           Test for convergence */	    if (abs(w) <= eps * erretm) {		if (orgati) {		    *dlam = d__[*i__] + tau;		} else {		    *dlam = d__[ip1] + tau;		}		goto L250;	    }	    if (w <= 0.) {		dltlb = max(dltlb,tau);	    } else {		dltub = min(dltub,tau);	    }/*           Calculate the new step */	    if (! swtch3) {		if (! swtch) {		    if (orgati) {/* Computing 2nd power */			d__1 = z__[*i__] / delta[*i__];			c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (				d__1 * d__1);		    } else {/* Computing 2nd power */			d__1 = z__[ip1] / delta[ip1];			c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * 				(d__1 * d__1);		    }		} else {		    temp = z__[ii] / delta[ii];		    if (orgati) {			dpsi += temp * temp;		    } else {			dphi += temp * temp;		    }		    c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;		}		a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] 			* dw;		b = delta[*i__] * delta[ip1] * w;		if (c__ == 0.) {		    if (a == 0.) {			if (! swtch) {			    if (orgati) {				a = z__[*i__] * z__[*i__] + delta[ip1] * 					delta[ip1] * (dpsi + dphi);			    } else {				a = z__[ip1] * z__[ip1] + delta[*i__] * delta[					*i__] * (dpsi + dphi);			    }			} else {			    a = delta[*i__] * delta[*i__] * dpsi + delta[ip1] 				    * delta[ip1] * dphi;			}		    }		    eta = b / a;		} else if (a <= 0.) {		    eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))			     / (c__ * 2.);		} else {		    eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, 			    abs(d__1))));		}	    } else {/*              Interpolation using THREE most relevant poles */		temp = rhoinv + psi + phi;		if (swtch) {		    c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;		    zz[0] = delta[iim1] * delta[iim1] * dpsi;		    zz[2] = delta[iip1] * delta[iip1] * dphi;		} else {		    if (orgati) {			temp1 = z__[iim1] / delta[iim1];			temp1 *= temp1;			c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] 				- d__[iip1]) * temp1;			zz[0] = z__[iim1] * z__[iim1];			zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + 				dphi);		    } else {			temp1 = z__[iip1] / delta[iip1];			temp1 *= temp1;			c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] 				- d__[iim1]) * temp1;			zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - 				temp1));			zz[2] = z__[iip1] * z__[iip1];		    }		}		dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, 			info);		if (*info != 0) {		    goto L250;		}	    }/*           Note, eta should be positive if w is negative, and *//*           eta should be negative otherwise. However, *//*           if for some reason caused by roundoff, eta*w > 0, *//*           we simply use one Newton step instead. This way *//*           will guarantee eta*w < 0. */	    if (w * eta >= 0.) {		eta = -w / dw;	    }	    temp = tau + eta;	    if (temp > dltub || temp < dltlb) {		if (w < 0.) {		    eta = (dltub - tau) / 2.;		} else {		    eta = (dltlb - tau) / 2.;		}	    }	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		delta[j] -= eta;/* L210: */	    }	    tau += eta;	    prew = w;/*           Evaluate PSI and the derivative DPSI */	    dpsi = 0.;	    psi = 0.;	    erretm = 0.;	    i__1 = iim1;	    for (j = 1; j <= i__1; ++j) {		temp = z__[j] / delta[j];		psi += z__[j] * temp;		dpsi += temp * temp;		erretm += psi;/* L220: */	    }	    erretm = abs(erretm);/*           Evaluate PHI and the derivative DPHI */	    dphi = 0.;	    phi = 0.;	    i__1 = iip1;	    for (j = *n; j >= i__1; --j) {		temp = z__[j] / delta[j];		phi += z__[j] * temp;		dphi += temp * temp;		erretm += phi;/* L230: */	    }	    temp = z__[ii] / delta[ii];	    dw = dpsi + dphi + temp * temp;	    temp = z__[ii] * temp;	    w = rhoinv + phi + psi + temp;	    erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. 		    + abs(tau) * dw;	    if (w * prew > 0. && abs(w) > abs(prew) / 10.) {		swtch = ! swtch;	    }/* L240: */	}/*        Return with INFO = 1, NITER = MAXIT and not converged */	*info = 1;	if (orgati) {	    *dlam = d__[*i__] + tau;	} else {	    *dlam = d__[ip1] + tau;	}    }L250:    return 0;/*     End of DLAED4 */} /* dlaed4_ */
 |