| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623 | /* dla_gerfsx_extended.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b6 = -1.;static doublereal c_b8 = 1.;/* Subroutine */ int dla_gerfsx_extended__(integer *prec_type__, integer *	trans_type__, integer *n, integer *nrhs, doublereal *a, integer *lda, 	doublereal *af, integer *ldaf, integer *ipiv, logical *colequ, 	doublereal *c__, doublereal *b, integer *ldb, doublereal *y, integer *	ldy, doublereal *berr_out__, integer *n_norms__, doublereal *errs_n__,	 doublereal *errs_c__, doublereal *res, doublereal *ayb, doublereal *	dy, doublereal *y_tail__, doublereal *rcond, integer *ithresh, 	doublereal *rthresh, doublereal *dz_ub__, logical *ignore_cwise__, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1, 	    y_offset, errs_n_dim1, errs_n_offset, errs_c_dim1, errs_c_offset, 	    i__1, i__2, i__3;    doublereal d__1, d__2;    char ch__1[1];    /* Local variables */    doublereal dxratmax, dzratmax;    integer i__, j;    extern /* Subroutine */ int dla_geamv__(integer *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    logical incr_prec__;    doublereal prev_dz_z__, yk, final_dx_x__;    extern /* Subroutine */ int dla_wwaddw__(integer *, doublereal *, 	    doublereal *, doublereal *);    doublereal final_dz_z__, prevnormdx;    integer cnt;    doublereal dyk, eps, incr_thresh__, dx_x__, dz_z__;    extern /* Subroutine */ int dla_lin_berr__(integer *, integer *, integer *	    , doublereal *, doublereal *, doublereal *);    doublereal ymin;    extern /* Subroutine */ int blas_dgemv_x__(integer *, integer *, integer *	    , doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *, integer *);    integer y_prec_state__;    extern /* Subroutine */ int blas_dgemv2_x__(integer *, integer *, integer 	    *, doublereal *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *), dgemv_(char *, integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *), dcopy_(integer *, doublereal *, 	    integer *, doublereal *, integer *);    doublereal dxrat, dzrat;    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *);    char trans[1];    doublereal normx, normy;    extern doublereal dlamch_(char *);    extern /* Subroutine */ int dgetrs_(char *, integer *, integer *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);    doublereal normdx;    extern /* Character */ VOID chla_transtype__(char *, ftnlen, integer *);    doublereal hugeval;    integer x_state__, z_state__;/*     -- LAPACK routine (version 3.2.1)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- April 2009                                                   -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLA_GERFSX_EXTENDED improves the computed solution to a system of *//*  linear equations by performing extra-precise iterative refinement *//*  and provides error bounds and backward error estimates for the solution. *//*  This subroutine is called by DGERFSX to perform iterative refinement. *//*  In addition to normwise error bound, the code provides maximum *//*  componentwise error bound if possible. See comments for ERR_BNDS_NORM *//*  and ERR_BNDS_COMP for details of the error bounds. Note that this *//*  subroutine is only resonsible for setting the second fields of *//*  ERR_BNDS_NORM and ERR_BNDS_COMP. *//*  Arguments *//*  ========= *//*     PREC_TYPE      (input) INTEGER *//*     Specifies the intermediate precision to be used in refinement. *//*     The value is defined by ILAPREC(P) where P is a CHARACTER and *//*     P    = 'S':  Single *//*          = 'D':  Double *//*          = 'I':  Indigenous *//*          = 'X', 'E':  Extra *//*     TRANS_TYPE     (input) INTEGER *//*     Specifies the transposition operation on A. *//*     The value is defined by ILATRANS(T) where T is a CHARACTER and *//*     T    = 'N':  No transpose *//*          = 'T':  Transpose *//*          = 'C':  Conjugate transpose *//*     N              (input) INTEGER *//*     The number of linear equations, i.e., the order of the *//*     matrix A.  N >= 0. *//*     NRHS           (input) INTEGER *//*     The number of right-hand-sides, i.e., the number of columns of the *//*     matrix B. *//*     A              (input) DOUBLE PRECISION array, dimension (LDA,N) *//*     On entry, the N-by-N matrix A. *//*     LDA            (input) INTEGER *//*     The leading dimension of the array A.  LDA >= max(1,N). *//*     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N) *//*     The factors L and U from the factorization *//*     A = P*L*U as computed by DGETRF. *//*     LDAF           (input) INTEGER *//*     The leading dimension of the array AF.  LDAF >= max(1,N). *//*     IPIV           (input) INTEGER array, dimension (N) *//*     The pivot indices from the factorization A = P*L*U *//*     as computed by DGETRF; row i of the matrix was interchanged *//*     with row IPIV(i). *//*     COLEQU         (input) LOGICAL *//*     If .TRUE. then column equilibration was done to A before calling *//*     this routine. This is needed to compute the solution and error *//*     bounds correctly. *//*     C              (input) DOUBLE PRECISION  array, dimension (N) *//*     The column scale factors for A. If COLEQU = .FALSE., C *//*     is not accessed. If C is input, each element of C should be a power *//*     of the radix to ensure a reliable solution and error estimates. *//*     Scaling by powers of the radix does not cause rounding errors unless *//*     the result underflows or overflows. Rounding errors during scaling *//*     lead to refining with a matrix that is not equivalent to the *//*     input matrix, producing error estimates that may not be *//*     reliable. *//*     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*     The right-hand-side matrix B. *//*     LDB            (input) INTEGER *//*     The leading dimension of the array B.  LDB >= max(1,N). *//*     Y              (input/output) DOUBLE PRECISION array, dimension *//*                    (LDY,NRHS) *//*     On entry, the solution matrix X, as computed by DGETRS. *//*     On exit, the improved solution matrix Y. *//*     LDY            (input) INTEGER *//*     The leading dimension of the array Y.  LDY >= max(1,N). *//*     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS) *//*     On exit, BERR_OUT(j) contains the componentwise relative backward *//*     error for right-hand-side j from the formula *//*         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) *//*     where abs(Z) is the componentwise absolute value of the matrix *//*     or vector Z. This is computed by DLA_LIN_BERR. *//*     N_NORMS        (input) INTEGER *//*     Determines which error bounds to return (see ERR_BNDS_NORM *//*     and ERR_BNDS_COMP). *//*     If N_NORMS >= 1 return normwise error bounds. *//*     If N_NORMS >= 2 return componentwise error bounds. *//*     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension *//*                    (NRHS, N_ERR_BNDS) *//*     For each right-hand side, this array contains information about *//*     various error bounds and condition numbers corresponding to the *//*     normwise relative error, which is defined as follows: *//*     Normwise relative error in the ith solution vector: *//*             max_j (abs(XTRUE(j,i) - X(j,i))) *//*            ------------------------------ *//*                  max_j abs(X(j,i)) *//*     The array is indexed by the type of error information as described *//*     below. There currently are up to three pieces of information *//*     returned. *//*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith *//*     right-hand side. *//*     The second index in ERR_BNDS_NORM(:,err) contains the following *//*     three fields: *//*     err = 1 "Trust/don't trust" boolean. Trust the answer if the *//*              reciprocal condition number is less than the threshold *//*              sqrt(n) * slamch('Epsilon'). *//*     err = 2 "Guaranteed" error bound: The estimated forward error, *//*              almost certainly within a factor of 10 of the true error *//*              so long as the next entry is greater than the threshold *//*              sqrt(n) * slamch('Epsilon'). This error bound should only *//*              be trusted if the previous boolean is true. *//*     err = 3  Reciprocal condition number: Estimated normwise *//*              reciprocal condition number.  Compared with the threshold *//*              sqrt(n) * slamch('Epsilon') to determine if the error *//*              estimate is "guaranteed". These reciprocal condition *//*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *//*              appropriately scaled matrix Z. *//*              Let Z = S*A, where S scales each row by a power of the *//*              radix so all absolute row sums of Z are approximately 1. *//*     This subroutine is only responsible for setting the second field *//*     above. *//*     See Lapack Working Note 165 for further details and extra *//*     cautions. *//*     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension *//*                    (NRHS, N_ERR_BNDS) *//*     For each right-hand side, this array contains information about *//*     various error bounds and condition numbers corresponding to the *//*     componentwise relative error, which is defined as follows: *//*     Componentwise relative error in the ith solution vector: *//*                    abs(XTRUE(j,i) - X(j,i)) *//*             max_j ---------------------- *//*                         abs(X(j,i)) *//*     The array is indexed by the right-hand side i (on which the *//*     componentwise relative error depends), and the type of error *//*     information as described below. There currently are up to three *//*     pieces of information returned for each right-hand side. If *//*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then *//*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most *//*     the first (:,N_ERR_BNDS) entries are returned. *//*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith *//*     right-hand side. *//*     The second index in ERR_BNDS_COMP(:,err) contains the following *//*     three fields: *//*     err = 1 "Trust/don't trust" boolean. Trust the answer if the *//*              reciprocal condition number is less than the threshold *//*              sqrt(n) * slamch('Epsilon'). *//*     err = 2 "Guaranteed" error bound: The estimated forward error, *//*              almost certainly within a factor of 10 of the true error *//*              so long as the next entry is greater than the threshold *//*              sqrt(n) * slamch('Epsilon'). This error bound should only *//*              be trusted if the previous boolean is true. *//*     err = 3  Reciprocal condition number: Estimated componentwise *//*              reciprocal condition number.  Compared with the threshold *//*              sqrt(n) * slamch('Epsilon') to determine if the error *//*              estimate is "guaranteed". These reciprocal condition *//*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *//*              appropriately scaled matrix Z. *//*              Let Z = S*(A*diag(x)), where x is the solution for the *//*              current right-hand side and S scales each row of *//*              A*diag(x) by a power of the radix so all absolute row *//*              sums of Z are approximately 1. *//*     This subroutine is only responsible for setting the second field *//*     above. *//*     See Lapack Working Note 165 for further details and extra *//*     cautions. *//*     RES            (input) DOUBLE PRECISION array, dimension (N) *//*     Workspace to hold the intermediate residual. *//*     AYB            (input) DOUBLE PRECISION array, dimension (N) *//*     Workspace. This can be the same workspace passed for Y_TAIL. *//*     DY             (input) DOUBLE PRECISION array, dimension (N) *//*     Workspace to hold the intermediate solution. *//*     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N) *//*     Workspace to hold the trailing bits of the intermediate solution. *//*     RCOND          (input) DOUBLE PRECISION *//*     Reciprocal scaled condition number.  This is an estimate of the *//*     reciprocal Skeel condition number of the matrix A after *//*     equilibration (if done).  If this is less than the machine *//*     precision (in particular, if it is zero), the matrix is singular *//*     to working precision.  Note that the error may still be small even *//*     if this number is very small and the matrix appears ill- *//*     conditioned. *//*     ITHRESH        (input) INTEGER *//*     The maximum number of residual computations allowed for *//*     refinement. The default is 10. For 'aggressive' set to 100 to *//*     permit convergence using approximate factorizations or *//*     factorizations other than LU. If the factorization uses a *//*     technique other than Gaussian elimination, the guarantees in *//*     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. *//*     RTHRESH        (input) DOUBLE PRECISION *//*     Determines when to stop refinement if the error estimate stops *//*     decreasing. Refinement will stop when the next solution no longer *//*     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is *//*     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The *//*     default value is 0.5. For 'aggressive' set to 0.9 to permit *//*     convergence on extremely ill-conditioned matrices. See LAWN 165 *//*     for more details. *//*     DZ_UB          (input) DOUBLE PRECISION *//*     Determines when to start considering componentwise convergence. *//*     Componentwise convergence is only considered after each component *//*     of the solution Y is stable, which we definte as the relative *//*     change in each component being less than DZ_UB. The default value *//*     is 0.25, requiring the first bit to be stable. See LAWN 165 for *//*     more details. *//*     IGNORE_CWISE   (input) LOGICAL *//*     If .TRUE. then ignore componentwise convergence. Default value *//*     is .FALSE.. *//*     INFO           (output) INTEGER *//*       = 0:  Successful exit. *//*       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal *//*             value *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. Parameters .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    errs_c_dim1 = *nrhs;    errs_c_offset = 1 + errs_c_dim1;    errs_c__ -= errs_c_offset;    errs_n_dim1 = *nrhs;    errs_n_offset = 1 + errs_n_dim1;    errs_n__ -= errs_n_offset;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    af_dim1 = *ldaf;    af_offset = 1 + af_dim1;    af -= af_offset;    --ipiv;    --c__;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    y_dim1 = *ldy;    y_offset = 1 + y_dim1;    y -= y_offset;    --berr_out__;    --res;    --ayb;    --dy;    --y_tail__;    /* Function Body */    if (*info != 0) {	return 0;    }    chla_transtype__(ch__1, (ftnlen)1, trans_type__);    *(unsigned char *)trans = *(unsigned char *)&ch__1[0];    eps = dlamch_("Epsilon");    hugeval = dlamch_("Overflow");/*     Force HUGEVAL to Inf */    hugeval *= hugeval;/*     Using HUGEVAL may lead to spurious underflows. */    incr_thresh__ = (doublereal) (*n) * eps;    i__1 = *nrhs;    for (j = 1; j <= i__1; ++j) {	y_prec_state__ = 1;	if (y_prec_state__ == 2) {	    i__2 = *n;	    for (i__ = 1; i__ <= i__2; ++i__) {		y_tail__[i__] = 0.;	    }	}	dxrat = 0.;	dxratmax = 0.;	dzrat = 0.;	dzratmax = 0.;	final_dx_x__ = hugeval;	final_dz_z__ = hugeval;	prevnormdx = hugeval;	prev_dz_z__ = hugeval;	dz_z__ = hugeval;	dx_x__ = hugeval;	x_state__ = 1;	z_state__ = 0;	incr_prec__ = FALSE_;	i__2 = *ithresh;	for (cnt = 1; cnt <= i__2; ++cnt) {/*         Compute residual RES = B_s - op(A_s) * Y, *//*             op(A) = A, A**T, or A**H depending on TRANS (and type). */	    dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);	    if (y_prec_state__ == 0) {		dgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 + 			1], &c__1, &c_b8, &res[1], &c__1);	    } else if (y_prec_state__ == 1) {		blas_dgemv_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda, &			y[j * y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1, 			prec_type__);	    } else {		blas_dgemv2_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda, 			&y[j * y_dim1 + 1], &y_tail__[1], &c__1, &c_b8, &res[			1], &c__1, prec_type__);	    }/*        XXX: RES is no longer needed. */	    dcopy_(n, &res[1], &c__1, &dy[1], &c__1);	    dgetrs_(trans, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &dy[1], 		    n, info);/*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */	    normx = 0.;	    normy = 0.;	    normdx = 0.;	    dz_z__ = 0.;	    ymin = hugeval;	    i__3 = *n;	    for (i__ = 1; i__ <= i__3; ++i__) {		yk = (d__1 = y[i__ + j * y_dim1], abs(d__1));		dyk = (d__1 = dy[i__], abs(d__1));		if (yk != 0.) {/* Computing MAX */		    d__1 = dz_z__, d__2 = dyk / yk;		    dz_z__ = max(d__1,d__2);		} else if (dyk != 0.) {		    dz_z__ = hugeval;		}		ymin = min(ymin,yk);		normy = max(normy,yk);		if (*colequ) {/* Computing MAX */		    d__1 = normx, d__2 = yk * c__[i__];		    normx = max(d__1,d__2);/* Computing MAX */		    d__1 = normdx, d__2 = dyk * c__[i__];		    normdx = max(d__1,d__2);		} else {		    normx = normy;		    normdx = max(normdx,dyk);		}	    }	    if (normx != 0.) {		dx_x__ = normdx / normx;	    } else if (normdx == 0.) {		dx_x__ = 0.;	    } else {		dx_x__ = hugeval;	    }	    dxrat = normdx / prevnormdx;	    dzrat = dz_z__ / prev_dz_z__;/*         Check termination criteria */	    if (! (*ignore_cwise__) && ymin * *rcond < incr_thresh__ * normy 		    && y_prec_state__ < 2) {		incr_prec__ = TRUE_;	    }	    if (x_state__ == 3 && dxrat <= *rthresh) {		x_state__ = 1;	    }	    if (x_state__ == 1) {		if (dx_x__ <= eps) {		    x_state__ = 2;		} else if (dxrat > *rthresh) {		    if (y_prec_state__ != 2) {			incr_prec__ = TRUE_;		    } else {			x_state__ = 3;		    }		} else {		    if (dxrat > dxratmax) {			dxratmax = dxrat;		    }		}		if (x_state__ > 1) {		    final_dx_x__ = dx_x__;		}	    }	    if (z_state__ == 0 && dz_z__ <= *dz_ub__) {		z_state__ = 1;	    }	    if (z_state__ == 3 && dzrat <= *rthresh) {		z_state__ = 1;	    }	    if (z_state__ == 1) {		if (dz_z__ <= eps) {		    z_state__ = 2;		} else if (dz_z__ > *dz_ub__) {		    z_state__ = 0;		    dzratmax = 0.;		    final_dz_z__ = hugeval;		} else if (dzrat > *rthresh) {		    if (y_prec_state__ != 2) {			incr_prec__ = TRUE_;		    } else {			z_state__ = 3;		    }		} else {		    if (dzrat > dzratmax) {			dzratmax = dzrat;		    }		}		if (z_state__ > 1) {		    final_dz_z__ = dz_z__;		}	    }/*           Exit if both normwise and componentwise stopped working, *//*           but if componentwise is unstable, let it go at least two *//*           iterations. */	    if (x_state__ != 1) {		if (*ignore_cwise__) {		    goto L666;		}		if (z_state__ == 3 || z_state__ == 2) {		    goto L666;		}		if (z_state__ == 0 && cnt > 1) {		    goto L666;		}	    }	    if (incr_prec__) {		incr_prec__ = FALSE_;		++y_prec_state__;		i__3 = *n;		for (i__ = 1; i__ <= i__3; ++i__) {		    y_tail__[i__] = 0.;		}	    }	    prevnormdx = normdx;	    prev_dz_z__ = dz_z__;/*           Update soluton. */	    if (y_prec_state__ < 2) {		daxpy_(n, &c_b8, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);	    } else {		dla_wwaddw__(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);	    }	}/*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT. */L666:/*     Set final_* when cnt hits ithresh. */	if (x_state__ == 1) {	    final_dx_x__ = dx_x__;	}	if (z_state__ == 1) {	    final_dz_z__ = dz_z__;	}/*     Compute error bounds */	if (*n_norms__ >= 1) {	    errs_n__[j + (errs_n_dim1 << 1)] = final_dx_x__ / (1 - dxratmax);	}	if (*n_norms__ >= 2) {	    errs_c__[j + (errs_c_dim1 << 1)] = final_dz_z__ / (1 - dzratmax);	}/*     Compute componentwise relative backward error from formula *//*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) *//*     where abs(Z) is the componentwise absolute value of the matrix *//*     or vector Z. *//*         Compute residual RES = B_s - op(A_s) * Y, *//*             op(A) = A, A**T, or A**H depending on TRANS (and type). */	dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);	dgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 + 1], &		c__1, &c_b8, &res[1], &c__1);	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {	    ayb[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));	}/*     Compute abs(op(A_s))*abs(Y) + abs(B_s). */	dla_geamv__(trans_type__, n, n, &c_b8, &a[a_offset], lda, &y[j * 		y_dim1 + 1], &c__1, &c_b8, &ayb[1], &c__1);	dla_lin_berr__(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);/*     End of loop for each RHS. */    }    return 0;} /* dla_gerfsx_extended__ */
 |