| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 | /* dgtts2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dgtts2_(integer *itrans, integer *n, integer *nrhs, 	doublereal *dl, doublereal *d__, doublereal *du, doublereal *du2, 	integer *ipiv, doublereal *b, integer *ldb){    /* System generated locals */    integer b_dim1, b_offset, i__1, i__2;    /* Local variables */    integer i__, j, ip;    doublereal temp;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGTTS2 solves one of the systems of equations *//*     A*X = B  or  A'*X = B, *//*  with a tridiagonal matrix A using the LU factorization computed *//*  by DGTTRF. *//*  Arguments *//*  ========= *//*  ITRANS  (input) INTEGER *//*          Specifies the form of the system of equations. *//*          = 0:  A * X = B  (No transpose) *//*          = 1:  A'* X = B  (Transpose) *//*          = 2:  A'* X = B  (Conjugate transpose = Transpose) *//*  N       (input) INTEGER *//*          The order of the matrix A. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  DL      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) multipliers that define the matrix L from the *//*          LU factorization of A. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the upper triangular matrix U from *//*          the LU factorization of A. *//*  DU      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) elements of the first super-diagonal of U. *//*  DU2     (input) DOUBLE PRECISION array, dimension (N-2) *//*          The (n-2) elements of the second super-diagonal of U. *//*  IPIV    (input) INTEGER array, dimension (N) *//*          The pivot indices; for 1 <= i <= n, row i of the matrix was *//*          interchanged with row IPIV(i).  IPIV(i) will always be either *//*          i or i+1; IPIV(i) = i indicates a row interchange was not *//*          required. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the matrix of right hand side vectors B. *//*          On exit, B is overwritten by the solution vectors X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    --dl;    --d__;    --du;    --du2;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    if (*n == 0 || *nrhs == 0) {	return 0;    }    if (*itrans == 0) {/*        Solve A*X = B using the LU factorization of A, *//*        overwriting each right hand side vector with its solution. */	if (*nrhs <= 1) {	    j = 1;L10:/*           Solve L*x = b. */	    i__1 = *n - 1;	    for (i__ = 1; i__ <= i__1; ++i__) {		ip = ipiv[i__];		temp = b[i__ + 1 - ip + i__ + j * b_dim1] - dl[i__] * b[ip + 			j * b_dim1];		b[i__ + j * b_dim1] = b[ip + j * b_dim1];		b[i__ + 1 + j * b_dim1] = temp;/* L20: */	    }/*           Solve U*x = b. */	    b[*n + j * b_dim1] /= d__[*n];	    if (*n > 1) {		b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] 			* b[*n + j * b_dim1]) / d__[*n - 1];	    }	    for (i__ = *n - 2; i__ >= 1; --i__) {		b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ 			+ 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j * b_dim1]			) / d__[i__];/* L30: */	    }	    if (j < *nrhs) {		++j;		goto L10;	    }	} else {	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {/*              Solve L*x = b. */		i__2 = *n - 1;		for (i__ = 1; i__ <= i__2; ++i__) {		    if (ipiv[i__] == i__) {			b[i__ + 1 + j * b_dim1] -= dl[i__] * b[i__ + j * 				b_dim1];		    } else {			temp = b[i__ + j * b_dim1];			b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];			b[i__ + 1 + j * b_dim1] = temp - dl[i__] * b[i__ + j *				 b_dim1];		    }/* L40: */		}/*              Solve U*x = b. */		b[*n + j * b_dim1] /= d__[*n];		if (*n > 1) {		    b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n 			    - 1] * b[*n + j * b_dim1]) / d__[*n - 1];		}		for (i__ = *n - 2; i__ >= 1; --i__) {		    b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[			    i__ + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j *			     b_dim1]) / d__[i__];/* L50: */		}/* L60: */	    }	}    } else {/*        Solve A' * X = B. */	if (*nrhs <= 1) {/*           Solve U'*x = b. */	    j = 1;L70:	    b[j * b_dim1 + 1] /= d__[1];	    if (*n > 1) {		b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * b_dim1 			+ 1]) / d__[2];	    }	    i__1 = *n;	    for (i__ = 3; i__ <= i__1; ++i__) {		b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] * b[			i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 2 + j *			 b_dim1]) / d__[i__];/* L80: */	    }/*           Solve L'*x = b. */	    for (i__ = *n - 1; i__ >= 1; --i__) {		ip = ipiv[i__];		temp = b[i__ + j * b_dim1] - dl[i__] * b[i__ + 1 + j * b_dim1]			;		b[i__ + j * b_dim1] = b[ip + j * b_dim1];		b[ip + j * b_dim1] = temp;/* L90: */	    }	    if (j < *nrhs) {		++j;		goto L70;	    }	} else {	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {/*              Solve U'*x = b. */		b[j * b_dim1 + 1] /= d__[1];		if (*n > 1) {		    b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * 			    b_dim1 + 1]) / d__[2];		}		i__2 = *n;		for (i__ = 3; i__ <= i__2; ++i__) {		    b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] *			     b[i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 			    2 + j * b_dim1]) / d__[i__];/* L100: */		}		for (i__ = *n - 1; i__ >= 1; --i__) {		    if (ipiv[i__] == i__) {			b[i__ + j * b_dim1] -= dl[i__] * b[i__ + 1 + j * 				b_dim1];		    } else {			temp = b[i__ + 1 + j * b_dim1];			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - dl[				i__] * temp;			b[i__ + j * b_dim1] = temp;		    }/* L110: */		}/* L120: */	    }	}    }/*     End of DGTTS2 */    return 0;} /* dgtts2_ */
 |